Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva M. Talavera is active.

Publication


Featured researches published by Eva M. Talavera.


Chemistry: A European Journal | 2011

Rational Design, Synthesis, and Spectroscopic and Photophysical Properties of a Visible‐Light‐Excitable, Ratiometric, Fluorescent Near‐Neutral pH Indicator Based on BODIPY

Noël Boens; Wenwu Qin; Mukulesh Baruah; Wim De Borggraeve; Aleksander Filarowski; Nick Smisdom; Marcel Ameloot; Luis Crovetto; Eva M. Talavera; Jose M. Alvarez-Pez

A visible-light-excitable, ratiometric, brightly fluorescent pH indicator for measurements in the pH range 5-7 has been designed and synthesized by conjugatively linking the BODIPY fluorophore at the 3-position to the pH-sensitive ligand imidazole through an ethenyl bridge. The probe is available as cell membrane permeable methyl ester 8-(4-carbomethoxyphenyl)-4,4-difluoro-3-[2-(1H-imidazol-4-yl)ethenyl]-1,5,7-trimethyl-3a,4a-diaza-4-bora-s-indacene (I) and corresponding water-soluble sodium carboxylate, sodium 8-(4-carboxylatophenyl)-4,4-difluoro-3-[2-(1H-imidazol-4-yl)ethenyl]-1,5,7-trimethyl-3a,4a-diaza-4-bora-s-indacene (II). The fluorescence quantum yield Φ(f) of ester I is very high (0.8-1.0) in the organic solvents tested. The fluorescence lifetime (ca. 4 ns) of I in organic solvents with varying polarity/polarizability (from cyclohexane to acetonitrile) is independent of the solvent with a fluorescence rate constant k(f) of 2.4×10(8) s(-1). Probe I is readily loaded in the cytosol of live cells, where its high fluorescence intensity remains nearly constant over an extended time period. Water-soluble indicator II exhibits two acid-base equilibria in aqueous solution, characterized by pK(a) values of 6.0 and 12.6. The Φ(f) value of II in aqueous solution is high: 0.6 for the cationic and anionic forms of the imidazole ligand, and 0.8 for neutral imidazole. On protonation-deprotonation in the near-neutral pH range, UV/Vis absorption and fluorescence spectral shifts along with isosbestic and pseudo-isoemissive points are observed. This dual-excitation and dual-emission pH indicator emits intense green-yellow fluorescence at lower pH and intense orange fluorescence at higher pH. The influence of ionic strength and buffer concentration on the absorbance and steady-state fluorescence of II has also been investigated. The apparent pK(a) of the near-neutral acid-base equilibrium determined by spectrophotometric and fluorometric titration is nearly independent of the added buffer and salt concentration. In aqueous solution in the absence of buffer and in the pH range 5.20-7.45, dual exponential fluorescence decays are obtained with decay time τ(1)=4.3 ns for the cationic and τ(2)=3.3 ns for the neutral form of II. The excited-state proton exchange of II at near-neutral pH becomes reversible on addition of phosphate (H(2)PO(4)(-)/HPO(4)(2-)) buffer, and a pH-dependent change of the fluorescence decay times is induced. Global compartmental analysis of fluorescence decay traces collected as a function of pH and phosphate buffer concentration was used to recover values of the deactivation rate constants of the excited cationic (k(01)=2.4×10(8) s(-1)) and neutral (k(02)=3.0×10(8) s(-1)) forms of II.


Journal of Chromatography A | 2001

Chromatographic purification and characterization of B-phycoerythrin from Porphyridium cruentum: Semipreparative high-performance liquid chromatographic separation and characterization of its subunits☆

Ruperto Bermejo; Eva M. Talavera; Jose M. Alvarez-Pez

A fast preparative two-step chromatographic method for purification of B-phycoerythrin from Porphyridium cruentum is described. This biliprotein was homogeneous as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis yielding three closely migrating bands corresponding to its three subunits. Baseline separation of its alpha-, beta- and gamma-subunits was achieved by a reversed-phase HPLC gradient semipreparative method with a C4 large-pore column and a solvent system consisting of 0.05% trifluoroacetic acid (TFA) in water and 0.05% TFA in acetonitrile. B-Phycoerythrin in different aggregation states and its subunits have been spectroscopically characterized. Hexameric B-phycoerythrin has similar secondary and tertiary structure than dissociated B-phycoerythrin determined by circular dichroism.


Journal of Physical Chemistry A | 2014

8-HaloBODIPYs and Their 8-(C, N, O, S) Substituted Analogues: Solvent Dependent UV–Vis Spectroscopy, Variable Temperature NMR, Crystal Structure Determination, and Quantum Chemical Calculations

Noël Boens; Lina Wang; Volker Leen; Peijia Yuan; Bram Verbelen; Wim Dehaen; Mark Van der Auweraer; Wim D. De Borggraeve; Luc Van Meervelt; Jeroen Jacobs; David Beljonne; Claire Tonnelé; Roberto Lazzaroni; Maria J. Ruedas-Rama; Angel Orte; Luis Crovetto; Eva M. Talavera; Jose M. Alvarez-Pez

The UV-vis electronic absorption and fluorescence emission properties of 8-halogenated (Cl, Br, I) difluoroboron dipyrrin (or 8-haloBODIPY) dyes and their 8-(C, N, O, S) substituted analogues are reported. The nature of the meso-substituent has a significant influence on the spectral band positions, the fluorescence quantum yields, and lifetimes. As a function of the solvent, the spectral maxima of all the investigated dyes are located within a limited wavelength range. The spectra of 8-haloBODIPYs display the narrow absorption and fluorescence emission bands and the generally quite small Stokes shifts characteristic of classic difluoroboron dipyrrins. Conversely, fluorophores with 8-phenylamino (7), 8-benzylamino (8), 8-methoxy (9), and 8-phenoxy (10) groups emit in the blue range of the visible spectrum and generally have larger Stokes shifts than common BODIPYs, whereas 8-(2-phenylethynyl)BODIPY (6) has red-shifted spectra compared to ordinary BODIPY dyes. Fluorescence lifetimes for 6, 8, and 10 have been measured for a large set of solvents and the solvent effect on their absorption and emission maxima has been analyzed using the generalized Catalán solvent scales. Restricted rotation about the C8-N bond in 7 and 8 has been observed via temperature dependent (1)H NMR spectroscopy, whereas for 10 the rotation about the C8-O bond is not hindered. The crystal structure of 8 demonstrates that the short C8-N bond has a significant double character and that this N atom exhibits a trigonal planar geometry. The crystal structure of 10 shows a short C8-O bond and an intramolecular C-H···π interaction. Quantum-chemical calculations have been performed to assess the effect of the meso-substituent on the spectroscopic properties.


Journal of Chromatography A | 1997

Chromatographic purification of biliproteins from Spirulina platensis high-performance liquid chromatographic separation of their α and β subunits

Ruperto Bermejo; Eva M. Talavera; Jose M. Alvarez-Pez; Juan Carlos Orte

A fast preparative two-step chromatographic method for purification of C-phycocyanin and allophycocyanin from Spirulina platensis is described. Both biliproteins were homogeneous as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis yielding two closely migrating bands. Separation of α and β subunits from C-phycocyanin and allophycocyanin was also accomplished by a chromatographic procedure under denaturing conditions. The phycocyanobilin chromophore from both biliproteins has been isolated, tested for purity by reversed-phase high performance liquid chromatography and spectroscopically characterized.


Journal of Physical Chemistry A | 2012

Visible Absorption and Fluorescence Spectroscopy of Conformationally Constrained, Annulated BODIPY Dyes

Noël Boens; Volker Leen; Wim Dehaen; Lina Wang; Koen Robeyns; Wenwu Qin; Xiaoliang Tang; David Beljonne; Claire Tonnelé; Jose M. Paredes; Maria J. Ruedas-Rama; Angel Orte; Luis Crovetto; Eva M. Talavera; Jose M. Alvarez-Pez

Six conformationally restricted BODIPY dyes with fused carbocycles were synthesized to study the effect of conformational mobility on their visible electronic absorption and fluorescence properties. The symmetrically disubstituted compounds (2, 6) have bathochromically shifted absorption and fluorescence spectral maxima compared to those of the respective asymmetrically monosubstituted dyes (1, 5). Fusion of conjugation extending rings to the α,β-positions of the BODIPY core is an especially effective method for the construction of boron dipyrromethene dyes absorbing and emitting at longer wavelengths. The fluorescence quantum yields Φ of dyes 1-6 are high (0.7 ≤ Φ ≤ 1.0). The experimental results are backed up by quantum chemical calculations of the lowest electronic excitations in 1, 2, 5, 6, and corresponding dyes of related chemical structure but without conformational restriction. The effect of the molecular structure on the visible absorption and fluorescence emission properties of 1-6 has been examined as a function of solvent by means of the recent, generalized treatment of the solvent effect, proposed by Catalán (J. Phys. Chem. B 2009, 113, 5951-5960). Solvent polarizability is the primary factor responsible for the small solvent-dependent shifts of the visible absorption and fluorescence emission bands of these dyes.


Photochemistry and Photobiology | 1994

STEADY‐STATE FLUORESCENCE METHOD FOR EVALUATING EXCITED STATE PROTON REACTIONS: APPLICATION TO FLUORESCEIN

Juan Yguerabide; Eva M. Talavera; Jose Mariaa Alvarez; Bartolomea Quintero

Abstract Fluorescein is a complex fluorophore in the sense that it displays four prototropic forms (cation, neutral, monoanion and dianion) in the pH range 1–9. In experiments with fluorescein‐labeled proteins we have sometimes observed complex nanosecond emission kinetics, which could be due to conversion of the excited monoanion into the excited dianion through an excited state proton exchange with a proton acceptor in the labeled protein. However, the literature is ambiguous on whether this possible excited state proton reaction of fluorescein does occur in practice. In this article we describe a general steady‐state fluorescence method for evaluating excited state proton reactions of simple as well as complex pH‐sensitive fluorophores and apply it to evaluate excited state proton reactions of fluorescein. The method depends on finding a buffer that can serve as an excited state proton donor‐acceptor but does not significantly perturb ground state proton equilibrium and especially does not form ground (or excited state complexes) with the fluorophore. Our results show that the excited monoanion‐dianion proton reaction of fluorescein does occur in the presence of phosphate buffer, which serves as a proton donor‐acceptor that does not significantly perturb ground state proton equilibria. The reaction becomes detectable at phosphate buffer concentrations greater than 20 mM and the reaction efficiency increases with increase in phosphate buffer concentrations. The reaction is most clearly demonstrated by adding phosphate buffer to a solution of fluorescein at constant pH 5.9 with preferential excitation of the monoanion. Under these conditions, the excited monoanion converts to the dianion during its lifetime. The conversion is detected experimentally as an increase in dianion and decrease in monoanion fluorescence intensities with increase in phosphate buffer concentration. The absorption spectrum is not significantly perturbed by the increase in phosphate buffer concentration. To quantitate the reaction, we have recorded titration graphs of fluorescence intensity versus pH for fluorescein solutions at low (5 mM) and high buffer (1 M) concentrations with preferential excitation of the monoanion and preferential detection of the dianion emission. We have also developed theoretical expressions that relate fluorescence intensity to pH in terms of the concentration of the four prototrophic forms of fluorescein, extinction coefficients, fluorescence efficiencies and ground and excited state pKa. The theoretical expressions give very good fits to the experimental data and allow evaluation of fundamental parameters such as pKa and fluorescence efficiencies. The analysis of the experimental data shows that the excited monoanion‐dianion reaction does not significantly occur at 5 mM phosphate buffer concentration. However, at 1 M buffer concentration the reaction is sufficiently fast that it practically achieves equilibrium during the lifetimes of the excited fluorescein monoanion and dianion. The pKa* of the excited monoanion‐dianion proton reaction is around 6.3. The results and methods presented here should be useful in the development and testing of pH‐sensitive labeling fluorophores and fluorescent indicators.


Journal of Physical Chemistry B | 2013

Real-time phosphate sensing in living cells using fluorescence lifetime imaging microscopy (FLIM).

Jose M. Paredes; María D. Girón; Maria J. Ruedas-Rama; Angel Orte; Luis Crovetto; Eva M. Talavera; Rafael Salto; Jose M. Alvarez-Pez

Phosphate ions play important roles in signal transduction and energy storage in biological systems. However, robust chemical sensors capable of real-time quantification of phosphate anions in live cells have not been developed. The fluorescein derivative dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (2-Me-4-OMe TG) exhibits the characteristic excited-state proton-transfer (ESPT) reaction of xanthenic derivatives at approximately physiological pH resulting in the dependence of the dyes nanosecond fluorescence decay time on the phosphate buffer concentration. This allows the 2-Me-4-OMe TG dye to be used with fluorescence lifetime imaging microscopy (FLIM) as a real-time phosphate intracellular sensor in cultured cells. This methodology has allowed the time course of cellular differentiation of MC3T3-E1 murine preosteoblast cells to be measured on the basis of the decrease in the decay time of 2-Me-4-OMe TG. These changes were consistent with increased alkaline phosphatase activity in the extracellular medium as a marker of the differentiation process.


Journal of Colloid and Interface Science | 2003

Fluorescent behavior of B-phycoerythrin in microemulsions of aerosol OT/water/isooctane.

Ruperto Bermejo; Diego J Tobaruela; Eva M. Talavera; Angel Orte; Jose M. Alvarez-Pez

Taking advantage of its unusual fluorescent properties, the incorporation of B-phycoerythrin (B-PE) in aerosol OT (AOT, sodium bis-(2-ethylhexyl) sulphosuccinate)/water/isooctane microemulsions was investigated by following their steady-state and time-resolved fluorescence as a function of the water-to-surfactant molar ratio, w(0). The fluorescent intensity at 575 nm increased continuously with increasing water content, saturating at a w(0) around 35 and staying practically constant at w(0)> or =40. The steady-state anisotropy showed an initial increase with increasing water content until w(0)=23 and then decreased strongly, staying practically constant when w(0)> or =40. The values of the fluorescent parameters, anisotropy and fluorescent intensity, were unchanged when the water content of the system increased in the range between w(0)=40 to 50. This implies the effective incorporation of B-PE in the microemulsion droplets with w(0)> or =40, as well as the equilibrium of the dispersion at these water/surfactant ratios, since higher water content does not affect the main surrounding microenvironment of the protein. The overall incorporation in the microemulsion droplets caused minor spectroscopic changes with respect to biliprotein in aqueous solution of 20 mM sodium phosphate buffer, pH 7.0, such as a blue absorption shift of 3 nm and an emission shift of 1.5 nm, as well as a slight increase in excitation anisotropy spectrum mainly caused by a decrease in protein mobility. Therefore, there are no important interactions between the chromophores and the AOT sulfonate head groups. Emission intensity decays followed complex kinetics in both aqueous and dispersion media. The stability with time and temperature of the biliprotein in the microemulsion was higher than in the aqueous solution. All the results can be explained in terms of B-PE inclusion in the water droplets of AOT microemulsions where the protein has similar configuration and conformation to that in aqueous solution but with the chromophores more protected.


ChemPhysChem | 2011

Effect of Surface Modification on Semiconductor Nanocrystal Fluorescence Lifetime

Maria J. Ruedas-Rama; Angel Orte; Elizabeth A. H. Hall; Jose M. Alvarez-Pez; Eva M. Talavera

Semiconductor nanocrystals, namely, quantum dots (QDs), present a set of unique photoluminescence properties, which has led to increased interest in using them as advantageous alternatives to conventional organic dyes. Many applications of QDs involve surface modification to enhance the solubility or biocompatibility of the QDs. One of the least exploited properties of QDs is the very long photoluminescence lifetime that usually has complex kinetics owing to the effect of quantum confinement. Herein, we describe the effect of different surface modifications on the photoluminescence decay kinetics of QDs. The different surface modifications were carefully chosen to provide lipophilic or water-soluble QDs with either positive or negative surface net charges. We also survey the effect on the QD lifetime of several ligands that interact with the QD surface, such as organic chromophores or fluorescent proteins. The results obtained demonstrate that time-resolved fluorescence is a useful tool for QD-based sensing to set the basis for the development of time-resolved-based nanosensors.


Physical Chemistry Chemical Physics | 2009

Tuned lifetime, at the ensemble and single molecule level, of a xanthenic fluorescent dye by means of a buffer-mediated excited-state proton exchange reaction

Jose M. Paredes; Luis Crovetto; Ramon Rios; Angel Orte; Jose M. Alvarez-Pez; Eva M. Talavera

The photophysical behaviour of the new fluorescein derivative 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one has been explored by using absorption, and steady-state, time-resolved and single-molecule fluorescence measurements. The apparent ground-state acidity constant of the dye determined by both the absorbance and steady-state fluorescence is almost independent of the added buffer and salt concentrations. The excited-state proton exchange reaction around the physiological pH becomes reversible upon addition of phosphate buffer, inducing a pH-dependent change of the steady-state fluorescence and decay times. Fluorescence decay traces, collected as a function of total buffer concentration and pH, were analyzed by global compartmental analysis (GCA) to elucidate the values of the excited-state rate constants. The features of this system make the fluorescence decays monoexponential at pH values and phosphate buffer concentrations higher than 6.10 and 0.2 M respectively, with the possibility of tuning the fluorescence lifetime value by changing pH or buffer concentrations. The tuned lifetimes obtained by means of phosphate concentration at constant pH have also been recovered at the single-molecule level.

Collaboration


Dive into the Eva M. Talavera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noël Boens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Robinson

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Ramon Rios

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge