Eva-Maria Geigl
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eva-Maria Geigl.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Mélanie Pruvost; Reinhard Schwarz; Virginia Bessa Correia; Sophie Champlot; Séverine Braguier; Nicolas Morel; Yolanda Fernández-Jalvo; Thierry Grange; Eva-Maria Geigl
Despite the enormous potential of analyses of ancient DNA for phylogeographic studies of past populations, the impact these analyses, most of which are performed with fossil samples from natural history museum collections, has been limited to some extent by the inefficient recovery of ancient genetic material. Here we show that the standard storage conditions and/or treatments of fossil bones in these collections can be detrimental to DNA survival. Using a quantitative paleogenetic analysis of 247 herbivore fossil bones up to 50,000 years old and originating from 60 different archeological and paleontological contexts, we demonstrate that freshly excavated and nontreated unwashed bones contain six times more DNA and yield twice as many authentic DNA sequences as bones treated with standard procedures. This effect was even more pronounced with bones from one Neolithic site, where only freshly excavated bones yielded results. Finally, we compared the DNA content in the fossil bones of one animal, a ≈3,200-year-old aurochs, excavated in two separate seasons 57 years apart. Whereas the washed museum-stored fossil bones did not permit any DNA amplification, all recently excavated bones yielded authentic aurochs sequences. We established that during the 57 years when the aurochs bones were stored in a collection, at least as much amplifiable DNA was lost as during the previous 3,200 years of burial. This result calls for a revision of the postexcavation treatment of fossil bones to better preserve the genetic heritage of past life forms.
PLOS ONE | 2010
Sophie Champlot; Camille Berthelot; Mélanie Pruvost; E. Andrew Bennett; Thierry Grange; Eva-Maria Geigl
Background PCR amplification of minute quantities of degraded DNA for ancient DNA research, forensic analyses, wildlife studies and ultrasensitive diagnostics is often hampered by contamination problems. The extent of these problems is inversely related to DNA concentration and target fragment size and concern (i) sample contamination, (ii) laboratory surface contamination, (iii) carry-over contamination, and (iv) contamination of reagents. Methodology/Principal Findings Here we performed a quantitative evaluation of current decontamination methods for these last three sources of contamination, and developed a new procedure to eliminate contaminating DNA contained in PCR reagents. We observed that most current decontamination methods are either not efficient enough to degrade short contaminating DNA molecules, rendered inefficient by the reagents themselves, or interfere with the PCR when used at doses high enough to eliminate these molecules. We also show that efficient reagent decontamination can be achieved by using a combination of treatments adapted to different reagent categories. Our procedure involves γ- and UV-irradiation and treatment with a mutant recombinant heat-labile double-strand specific DNase from the Antarctic shrimp Pandalus borealis. Optimal performance of these treatments is achieved in narrow experimental conditions that have been precisely analyzed and defined herein. Conclusions/Significance There is not a single decontamination method valid for all possible contamination sources occurring in PCR reagents and in the molecular biology laboratory and most common decontamination methods are not efficient enough to decontaminate short DNA fragments of low concentration. We developed a versatile multistrategy decontamination procedure for PCR reagents. We demonstrate that this procedure allows efficient reagent decontamination while preserving the efficiency of PCR amplification of minute quantities of DNA.
Molecular Ecology | 2011
P. Charruau; C. Fernandes; Pablo Orozco-terWengel; Jochen Peters; L. Hunter; H. Ziaie; A. Jourabchian; H. Jowkar; G. Schaller; S. Ostrowski; P. Vercammen; Thierry Grange; Christian Schlötterer; A. Kotze; Eva-Maria Geigl; Chris Walzer; Pamela A. Burger
The cheetah (Acinonyx jubatus) has been described as a species with low levels of genetic variation. This has been suggested to be the consequence of a demographic bottleneck 10 000–12 000 years ago (ya) and also led to the assumption that only small genetic differences exist between the described subspecies. However, analysing mitochondrial DNA and microsatellites in cheetah samples from most of the historic range of the species we found relatively deep phylogeographic breaks between some of the investigated populations, and most of the methods assessed divergence time estimates predating the postulated bottleneck. Mitochondrial DNA monophyly and overall levels of genetic differentiation support the distinctiveness of Northern‐East African cheetahs (Acinonyx jubatus soemmeringii). Moreover, combining archaeozoological and contemporary samples, we show that Asiatic cheetahs (Acinonyx jubatus venaticus) are unambiguously separated from African subspecies. Divergence time estimates from mitochondrial and nuclear data place the split between Asiatic and Southern African cheetahs (Acinonyx jubatus jubatus) at 32 000–67 000 ya using an average mammalian microsatellite mutation rate and at 4700–44 000 ya employing human microsatellite mutation rates. Cheetahs are vulnerable to extinction globally and critically endangered in their Asiatic range, where the last 70–110 individuals survive only in Iran. We demonstrate that these extant Iranian cheetahs are an autochthonous monophyletic population and the last representatives of the Asiatic subspecies A. j. venaticus. We advocate that conservation strategies should consider the uncovered independent evolutionary histories of Asiatic and African cheetahs, as well as among some African subspecies. This would facilitate the dual conservation priorities of maintaining locally adapted ecotypes and genetic diversity.
BioTechniques | 2005
Mélanie Pruvost; Thierry Grange; Eva-Maria Geigl
PCR analyses of ancient and degraded DNA suffer from their extreme sensitivity to contamination by modern DNA originating, in particular, from carryover contamination with previously amplified or cloned material. Any strategy for limiting carryover contamination would also have to be compatible with the particular requirements of ancient DNA analyses. These include the need (i) to amplify short PCR products due to template fragmentation; (ii) to clone PCR products in order to track possible base misincorporation resulting from damaged templates; and (iii) to avoid incomplete decontamination causing artifactual sequence transformation. Here we show that the enzymatic decontamination procedures based upon dUTP- and uracil-N-glycosylase (UNG) can be adapted to meet the specific requirements of ancient DNA research. Thus, efficiency can be improved to vastly reduce the amplification of fragments < or = 100 bp. Secondly, the use of an Escherichia coli strain deficient in both UNG and dUTPase allows for the cloning of uracil-containing PCR products and offers protection from plasmid DNA contamination, and, lastly, PCR products amplified from UNG-degraded material are free of misleading sequence modifications.
BioTechniques | 2014
E. Andrew Bennett; Diyendo Massilani; Giulia Lizzo; Julien Daligault; Eva-Maria Geigl; Thierry Grange
A novel method of library construction that takes advantage of a single-stranded DNA ligase has been recently described and used to generate high-resolution genomes from ancient DNA samples. While this method is effective and appears to recover a greater fraction of endogenous ancient material, there has been no direct comparison of results from different library construction methods on a diversity of ancient DNA samples. In addition, the single-stranded method is limited by high cost and lengthy preparation time and is restricted to the Illumina sequencing platform. Here we present in-depth comparisons of the different available library construction methods for DNA purified from 16 ancient and modern faunal and human remains, covering a range of different taphonomic and climatic conditions. We further present a DNA purification method for ancient samples that permits the concentration of a large volume of dissolved extract with minimal manipulation and methodological improvements to the single-stranded method to render it more economical and versatile, in particular to expand its use to both the Illumina and the Ion Torrent sequencing platforms. We show that the single-stranded library construction method improves the relative recovery of endogenous to exogenous DNA for most, but not all, of our ancient extracts.
Annals of Anatomy-anatomischer Anzeiger | 2012
Eva-Maria Geigl; Thierry Grange
The Equidae have a long evolutionary history that has interested palaeontologists for a long time. Their morphology-based taxonomy, however, is a matter of controversy. Since most equid species are now extinct, the phylogenetic tree based on genetic data can be established only imperfectly via deduction of present day genomes and little is known about the past genetic diversity of these species. Recent studies of ancient DNA preserved in fossil bones have led to a simplification of the phylogenetic tree and the classification system. The situation is still particularly unclear for the wild asses whose geographical distribution in the Pleistocene and the early Holocene stretched from Northern Africa to Eurasia before they became endangered or extinct. Therefore, we performed a phylogeographic study of bone remains of wild asses covering their former geographic range over the past 100,000 years based on the analysis of ancient mitochondrial DNA. Here, we will not show but rather discuss our results calling the morphology-based classification into question and indicating that morphological criteria alone can be an unreliable index in inferring various equid species. Indeed, the diversity of mitochondrial lineages in populations with similar morphology along with genetic signatures shared between morphologically distinct animals reveal a significant morphological plasticity among Equus species. The classification of palaeontological species based on morphological and genetic criteria will be discussed.
PLOS ONE | 2016
Nathalie Ml Côté; Julien Daligault; Mélanie Pruvost; E. Andrew Bennett; Olivier Gorgé; Silvia Guimaraes; Nicolas Capelli; Matthieu Le Bailly; Eva-Maria Geigl; Thierry Grange
Human gastrointestinal parasites are good indicators for hygienic conditions and health status of past and present individuals and communities. While microscopic analysis of eggs in sediments of archeological sites often allows their taxonomic identification, this method is rarely effective at the species level, and requires both the survival of intact eggs and their proper identification. Genotyping via PCR-based approaches has the potential to achieve a precise species-level taxonomic determination. However, so far it has mostly been applied to individual eggs isolated from archeological samples. To increase the throughput and taxonomic accuracy, as well as reduce costs of genotyping methods, we adapted a PCR-based approach coupled with next-generation sequencing to perform precise taxonomic identification of parasitic helminths directly from archeological sediments. Our study of twenty-five 100 to 7,200 year-old archeological samples proved this to be a powerful, reliable and efficient approach for species determination even in the absence of preserved eggs, either as a stand-alone method or as a complement to microscopic studies.
BMC Biology | 2016
Diyendo Massilani; Silvia Guimaraes; E. Andrew Bennett; Małgorzata Tokarska; Rose-Marie Arbogast; Gennady F. Baryshnikov; G. G. Boeskorov; Jean-Christophe Castel; Sergey P. Davydov; Stéphane Madelaine; Olivier Putelat; Natalia N. Spasskaya; Hans Peter Uerpmann; Thierry Grange; Eva-Maria Geigl
BackgroundClimatic and environmental fluctuations as well as anthropogenic pressure have led to the extinction of much of Europe’s megafauna. The European bison or wisent (Bison bonasus), one of the last wild European large mammals, narrowly escaped extinction at the onset of the 20th century owing to hunting and habitat fragmentation. Little is known, however, about its origin, evolutionary history and population dynamics during the Pleistocene.ResultsThrough ancient DNA analysis we show that the emblematic European bison has experienced several waves of population expansion, contraction, and extinction during the last 50,000 years in Europe, culminating in a major reduction of genetic diversity during the Holocene. Fifty-seven complete and partial ancient mitogenomes from throughout Europe, the Caucasus, and Siberia reveal that three populations of wisent (Bison bonasus) and steppe bison (B. priscus) alternately occupied Western Europe, correlating with climate-induced environmental changes. The Late Pleistocene European steppe bison originated from northern Eurasia, whereas the modern wisent population emerged from a refuge in the southern Caucasus after the last glacial maximum. A population overlap during a transition period is reflected in ca. 36,000-year-old paintings in the French Chauvet cave. Bayesian analyses of these complete ancient mitogenomes yielded new dates of the various branching events during the evolution of Bison and its radiation with Bos, which lead us to propose that the genetic affiliation between the wisent and cattle mitogenomes result from incomplete lineage sorting rather than post-speciation gene flow.ConclusionThe paleogenetic analysis of bison remains from the last 50,000 years reveals the influence of climate changes on the dynamics of the various bison populations in Europe, only one of which survived into the Holocene, where it experienced severe reductions in its genetic diversity. The time depth and geographical scope of this study enables us to propose temperate Western Europe as a suitable biotope for the wisent compatible with its reintroduction.
Archive | 2016
E. Andrew Bennett; Olivier Gorgé; Thierry Grange; Yolanda Fernández-Jalvo; Eva-Maria Geigl
Coprolites are fossil scats and provide indirect witness of the activity of past animals of a given area, whether or not fossil bones of these animals are present in the site. The shape, size, inclusions and geo- and bio-chemical composition are criteria for identification of the animal that left the coprolite. Unit II from Azokh 1 has yielded two complete undamaged coprolites one of which contained partially digested fossil bones. Taphonomic and taxonomic indications from this coprolite could not conclusively identify the origin of the coprolites. Analysis of targeted mitochondrial DNA, performed on one of the coprolites, has provided evidence for the presence of hyena DNA, but this finding was not supported by further investigation using next-generation high throughput sequencing. The most parsimonious interpretation of the results of the genetic analyses is that the highly sensitive PCR assay reveals contamination of the coprolite with minute amounts of modern brown hyena DNA presumably originating from brown hyena scats sampled recently in South Africa.
Methods of Molecular Biology | 2016
Olivier Gorgé; E. Andrew Bennett; Diyendo Massilani; Julien Daligault; Mélanie Pruvost; Eva-Maria Geigl; Thierry Grange
The development of next-generation sequencing has led to a breakthrough in the analysis of ancient genomes, and the subsequent genomic analyses of the skeletal remains of ancient humans have revolutionized the knowledge of the evolution of our species, including the discovery of a new hominin, and demonstrated admixtures with more distantly related archaic populations such as Neandertals and Denisovans. Moreover, it has also yielded novel insights into the evolution of ancient pathogens. The analysis of ancient microbial genomes allows the study of their recent evolution, presently over the last several millennia. These spectacular results have been attained despite the degradation of DNA after the death of the host, which results in very short DNA molecules that become increasingly damaged, only low quantities of which remain. The low quantity of ancient DNA molecules renders their analysis difficult and prone to contamination with modern DNA molecules, in particular via contamination from the reagents used in DNA purification and downstream analysis steps. Finally, the rare ancient molecules are diluted in environmental DNA originating from the soil microorganisms that colonize bones and teeth. Thus, ancient skeletal remains can share DNA profiles with environmental samples and identifying ancient microbial genomes among the more recent, presently poorly characterized, environmental microbiome is particularly challenging. Here, we describe the methods developed and/or in use in our laboratory to produce reliable and reproducible paleogenomic results from ancient skeletal remains that can be used to identify the presence of ancient microbiota.