Eva-Maria Materne
Technical University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eva-Maria Materne.
Lab on a Chip | 2013
Ilka Wagner; Eva-Maria Materne; Sven Brincker; Ute Süßbier; Caroline Frädrich; Mathias Busek; Frank Sonntag; D. A. Sakharov; Evgeny V. Trushkin; Alexander G. Tonevitsky; Roland Lauster; Uwe Marx
Current in vitro and animal tests for drug development are failing to emulate the systemic organ complexity of the human body and, therefore, to accurately predict drug toxicity. In this study, we present a multi-organ-chip capable of maintaining 3D tissues derived from cell lines, primary cells and biopsies of various human organs. We designed a multi-organ-chip with co-cultures of human artificial liver microtissues and skin biopsies, each a (1)/100,000 of the biomass of their original human organ counterparts, and have successfully proven its long-term performance. The system supports two different culture modes: i) tissue exposed to the fluid flow, or ii) tissue shielded from the underlying fluid flow by standard Transwell® cultures. Crosstalk between the two tissues was observed in 14-day co-cultures exposed to fluid flow. Applying the same culture mode, liver microtissues showed sensitivity at different molecular levels to the toxic substance troglitazone during a 6-day exposure. Finally, an astonishingly stable long-term performance of the Transwell®-based co-cultures could be observed over a 28-day period. This mode facilitates exposure of skin at the air-liquid interface. Thus, we provide here a potential new tool for systemic substance testing.
Microbial Cell Factories | 2010
Julia Glazyrina; Eva-Maria Materne; Thomas Dreher; Dirk Storm; Stefan Junne; Thorsten Adams; Gerhard Greller; Peter Neubauer
BackgroundSingle-use rocking-motion-type bag bioreactors provide advantages compared to standard stirred tank bioreactors by decreased contamination risks, reduction of cleaning and sterilization time, lower investment costs, and simple and cheaper validation. Currently, they are widely used for cell cultures although their use for small and medium scale production of recombinant proteins with microbial hosts might be very attractive. However, the utilization of rocking- or wave-induced motion-type bioreactors for fast growing aerobic microbes is limited because of their lower oxygen mass transfer rate. A conventional approach to reduce the oxygen demand of a culture is the fed-batch technology. New developments, such as the BIOSTAT® CultiBag RM system pave the way for applying advanced fed-batch control strategies also in rocking-motion-type bioreactors. Alternatively, internal substrate delivery systems such as EnBase® Flo provide an opportunity for adopting simple to use fed-batch-type strategies to shaken cultures. Here, we investigate the possibilities which both strategies offer in view of high cell density cultivation of E. coli and recombinant protein production.ResultsCultivation of E. coli in the BIOSTAT® CultiBag RM system in a conventional batch mode without control yielded an optical density (OD600) of 3 to 4 which is comparable to shake flasks. The culture runs into oxygen limitation. In a glucose limited fed-batch culture with an exponential feed and oxygen pulsing, the culture grew fully aerobically to an OD600 of 60 (20 g L-1 cell dry weight). By the use of an internal controlled glucose delivery system, EnBase® Flo, OD600 of 30 (10 g L-1 cell dry weight) is obtained without the demand of computer controlled external nutrient supply. EnBase® Flo also worked well in the CultiBag RM system with a recombinant E. coli RB791 strain expressing a heterologous alcohol dehydrogenase (ADH) to very high levels, indicating that the enzyme based feed supply strategy functions well for recombinant protein production also in a rocking-motion-type bioreactor.ConclusionsRocking-motion-type bioreactors may provide an interesting alternative to standard cultivation in bioreactors for cultivation of bacteria and recombinant protein production. The BIOSTAT® Cultibag RM system with the single-use sensors and advanced control system paves the way for the fed-batch technology also to rocking-motion-type bioreactors. It is possible to reach cell densities which are far above shake flasks and typical for stirred tank reactors with the improved oxygen transfer rate. For more simple applications the EnBase® Flo method offers an easy and robust solution for rocking-motion-systems which do not have such advanced control possibilities.
Journal of Biotechnology | 2015
Eva-Maria Materne; Anja Ramme; Ana P. Terrasso; Margarida Serra; Paula M. Alves; Catarina Brito; D. A. Sakharov; Alexander G. Tonevitsky; Roland Lauster; Uwe Marx
Current in vitro and animal tests for drug development are failing to emulate the systemic organ complexity of the human body and, therefore, often do not accurately predict drug toxicity, leading to high attrition rates in clinical studies (Paul et al., 2010). The phylogenetic distance between humans and laboratory animals is enormous, this affects the transferability of animal data on the efficacy of neuroprotective drugs. Therefore, many neuroprotective treatments that have shown promise in animals have not been successful when transferred to humans (Dragunow, 2008; Gibbons and Dragunow, 2010). We present a multi-organ chip capable of maintaining 3D tissues derived from various cell sources in a combined media circuit which bridges the gap in systemic and human tests. A steady state co-culture of human artificial liver microtissues and human neurospheres exposed to fluid flow over two weeks in the multi-organ chip has successfully proven its long-term performance. Daily lactate dehydrogenase activity measurements of the medium and immunofluorescence end-point staining proved the viability of the tissues and the maintenance of differentiated cellular phenotypes. Moreover, the lactate production and glucose consumption values of the tissues cultured indicated that a stable steady-state was achieved after 6 days of co-cultivation. The neurospheres remained differentiated neurons over the two-week cultivation in the multi-organ chip, proven by qPCR and immunofluorescence of the neuronal markers βIII-tubulin and microtubule-associated protein-2. Additionally, a two-week toxicity assay with a repeated substance exposure to the neurotoxic 2,5-hexanedione in two different concentrations induced high apoptosis within the neurospheres and liver microtissues, as shown by a strong increase of lactate dehydrogenase activity in the medium. The principal finding of the exposure of the co-culture to 2,5-hexanedione was that not only toxicity profiles of two different doses could be discriminated, but also that the co-cultures were more sensitive to the substance compared to respective single-tissue cultures in the multi-organ-chip. Thus, we provide here a new in vitro tool which might be utilized to predict the safety and efficacy of substances in clinical studies more accurately in the future.
Journal of Visualized Experiments | 2015
Eva-Maria Materne; Ilka Maschmeyer; Alexandra Lorenz; Reyk Horland; Katharina Schimek; Mathias Busek; Frank Sonntag; Roland Lauster; Uwe Marx
The ever growing amount of new substances released onto the market and the limited predictability of current in vitro test systems has led to a high need for new solutions for substance testing. Many drugs that have been removed from the market due to drug-induced liver injury released their toxic potential only after several doses of chronic testing in humans. However, a controlled microenvironment is pivotal for long-term multiple dosing experiments, as even minor alterations in extracellular conditions may greatly influence the cell physiology. We focused within our research program on the generation of a microengineered bioreactor, which can be dynamically perfused by an on-chip pump and combines at least two culture spaces for multi-organ applications. This circulatory system mimics the in vivo conditions of primary cell cultures better and assures a steadier, more quantifiable extracellular relay of signals to the cells. For demonstration purposes, human liver equivalents, generated by aggregating differentiated HepaRG cells with human hepatic stellate cells in hanging drop plates, were cocultured with human skin punch biopsies for up to 28 days inside the microbioreactor. The use of cell culture inserts enables the skin to be cultured at an air-liquid interface, allowing topical substance exposure. The microbioreactor system is capable of supporting these cocultures at near physiologic fluid flow and volume-to-liquid ratios, ensuring stable and organotypic culture conditions. The possibility of long-term cultures enables the repeated exposure to substances. Furthermore, a vascularization of the microfluidic channel circuit using human dermal microvascular endothelial cells yields a physiologically more relevant vascular model.
Journal of Biotechnology | 2015
Anke Wagner; Viola Röhrs; Eva-Maria Materne; Thomas Hiller; Radoslaw Kedzierski; Henry Fechner; Roland Lauster; Jens Kurreck
Reconstituted three-dimensional (3D) liver models obtained by engrafting hepatic cells into an extracellular matrix (ECM) are valuable tools to study tissue regeneration, drug action and toxicology ex vivo. The aim of the present study was to establish a system for the functional investigation of a viral vector in a 3D liver model composed of human HepG2 cells on a rat ECM. An adeno-associated viral (AAV) vector expressing the Emerald green fluorescent protein (EmGFP) and a short hairpin RNA (shRNA) directed against human cyclophilin b (hCycB) was injected into the portal vein of 3D liver models. Application of the vector did not exert toxic effects, as shown by analysis of metabolic parameters. Six days after transduction, fluorescence microscopy analysis of EmGFP production revealed widespread distribution of the AAV vectors. After optimization of the recellularization and transduction conditions, averages of 55 and 90 internalized vector genomes per cell in two replicates of the liver model were achieved, as determined by quantitative PCR analysis. Functionality of the AAV vector was confirmed by efficient shRNA-mediated knockdown of hCycB by 70-90%. Our study provides a proof-of-concept that a recellularized biological ECM provides a valuable model to study viral vectors ex vivo.
BMC Proceedings | 2013
Eva-Maria Materne; Ilka Wagner; Caroline Frädrich; Ute Süßbier; Reyk Horland; Silke Hoffmann; Sven Brincker; Alexandra Lorenz; Matthias Gruchow; Frank Sonntag; Udo Klotzbach; Roland Lauster; Uwe Marx
Published by BioMed Central: Materne, Eva-Maria et al.: Dynamic culture of human liver equivalents inside a micro-bioreactor for longterm substance testing. - In: BMC Proceedings. - ISSN 1753-6561 (online). - 7 (2012), suppl. 6, art. P72. - doi:10.1186/1753-6561-7-S6-P72.
BMC Proceedings | 2013
Eva-Maria Materne; Caroline Frädrich; Reyk Horland; Silke Hoffmann; Sven Brincker; Alexandra Lorenz; Mathias Busek; Frank Sonntag; Udo Klotzbach; Roland Lauster; Uwe Marx; Ilka Wagner
Background The ever-growing amount of new substances released to the market and the limited predictability of current in vitro test systems has led to an ample need for new substance testing solutions. Many drugs like troglitazone, that had to be removed from the market due to drug induced liver injury, show their toxic potential only after chronic long term exposure. But for long-term multiple dosing experiments, a controlled microenvironment is pivotal, as even minor alterations in extracellular conditions may greatly influence the cell physiology. Within our research program, we focused on the generation of a micro-engineered bioreactor, which can be dynamically perfused by an on-chip pump and combines at least two culture spaces for multi-organ applications. This circulatory systems better mimics the in vivo conditions of primary cell cultures and assures steadier, more quantifiable extracellular signaling to the cells.
BMC Proceedings | 2013
Katharina Schimek; Reyk Horland; Sven Brincker; Benjamin Groth; Ulrike Menzel; Ilka Wagner; Eva-Maria Materne; Gerd Lindner; Alexandra Lorenz; Silke Hoffmann; Mathias Busek; Frank Sonntag; Udo Klotzbach; Roland Lauster; Uwe Marx
Background Enormous efforts have been made to develop circulation systems for physiological nutrient supply and waste removal of in vitro cultured tissues. These developments are aiming for in vitro generation of organ equivalents such as liver, lymph nodes and lung or even multi-organ systems for substance testing, research on organ regeneration or transplant manufacturing. Initially technical perfusion systems based on membranes, hollow fibers or networks of micro-channels were used for these purposes. However, none of the currently available systems ensures long-term homeostasis of the respective tissue over months. This is caused by a lack of in vivo-like vasculature which leads to continuous accumulation of protein sediments and cell debris in the systems. Here, we demonstrate a closed and self-contained circulation system emulating the natural blood perfusion environment of vertebrates at tissue level.
European Journal of Pharmaceutics and Biopharmaceutics | 2015
Ilka Maschmeyer; Tobias Hasenberg; Annika Jaenicke; Marcus Lindner; Alexandra Lorenz; Julie Zech; Leif-Alexander Garbe; Frank Sonntag; Patrick Hayden; Seyoum Ayehunie; Roland Lauster; Uwe Marx; Eva-Maria Materne
Lab on a Chip | 2013
Eva-Maria Materne; Alexander G. Tonevitsky; Uwe Marx