Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva-Maria Ratai is active.

Publication


Featured researches published by Eva-Maria Ratai.


Radiology | 2014

Clinical Proton MR Spectroscopy in Central Nervous System Disorders

Gülin Öz; Jeffry R. Alger; Peter B. Barker; Robert Bartha; Alberto Bizzi; Chris Boesch; Patrick J. Bolan; Kevin M. Brindle; Cristina Cudalbu; Alp Dinçer; Ulrike Dydak; Uzay E. Emir; Jens Frahm; R.G. González; Stephan Gruber; Rolf Gruetter; Rakesh K. Gupta; Arend Heerschap; A Henning; Hoby P. Hetherington; Franklyn A. Howe; Petra Susan Hüppi; Ralph E. Hurd; Kejal Kantarci; Dennis W.J. Klomp; Roland Kreis; Marijn J. Kruiskamp; Martin O. Leach; Alexander Lin; Peter R. Luijten

A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units.


Current Biology | 2016

Reduced GABAergic Action in the Autistic Brain

Caroline E. Robertson; Eva-Maria Ratai; Nancy Kanwisher

An imbalance between excitatory/inhibitory neurotransmission has been posited as a central characteristic of the neurobiology of autism [1], inspired in part by the striking prevalence of seizures among individuals with the disorder [2]. Evidence supporting this hypothesis has specifically implicated the signaling pathway of the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), in this putative imbalance: GABA receptor genes have been associated with autism in linkage and copy number variation studies [3-7], fewer GABA receptor subunits have been observed in the post-mortem tissue of autistic individuals [8, 9], and GABAergic signaling is disrupted across heterogeneous mouse models of autism [10]. Yet, empirical evidence supporting this hypothesis in humans is lacking, leaving a gulf between animal and human studies of the condition. Here, we present a direct link between GABA signaling and autistic perceptual symptomatology. We first demonstrate a robust, replicated autistic deficit in binocular rivalry [11], a basic visual function that is thought to rely on the balance of excitation/inhibition in visual cortex [12-15]. Then, using magnetic resonance spectroscopy, we demonstrate a tight linkage between binocular rivalry dynamics in typical participants and both GABA and glutamate levels in the visual cortex. Finally, we show that the link between GABA and binocular rivalry dynamics is completely and specifically absent in autism. These results suggest a disruption in inhibitory signaling in the autistic brain and forge a translational path between animal and human models of the condition.


Journal of Magnetic Resonance | 2010

Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high-field clinical scanners.

Ovidiu C. Andronesi; Saadallah Ramadan; Eva-Maria Ratai; Dominique Jennings; Carolyn E. Mountford; A. Gregory Sorensen

The purpose of this work was to design and implement constant adiabaticity gradient modulated pulses that have improved slice profiles and reduced artifacts for spectroscopic imaging on 3T clinical scanners equipped with standard hardware. The newly proposed pulses were designed using the gradient offset independent adiabaticity (GOIA, Tannus and Garwood[13]) method using WURST modulation for RF and gradient waveforms. The GOIA-WURST pulses were compared with GOIA-HSn (GOIA based on nth-order hyperbolic secant) and FOCI (frequency offset corrected inversion) pulses of the same bandwidth and duration. Numerical simulations and experimental measurements in phantoms and healthy volunteers are presented. GOIA-WURST pulses provide improved slice profile that have less slice smearing for off-resonance frequencies compared to GOIA-HSn pulses. The peak RF amplitude of GOIA-WURST is much lower (40% less) than FOCI but slightly higher (14.9% more) to GOIA-HSn. The quality of spectra as shown by the analysis of lineshapes, eddy currents artifacts, subcutaneous lipid contamination and SNR is improved for GOIA-WURST. GOIA-WURST pulse tested in this work shows that reliable spectroscopic imaging could be obtained in routine clinical setup and might facilitate the use of clinical spectroscopy.


PLOS ONE | 2011

Minocycline Inhibition of Monocyte Activation Correlates with Neuronal Protection in SIV NeuroAIDS

Jennifer H. Campbell; Tricia H. Burdo; Patrick Autissier; Jeffrey P. Bombardier; Susan V. Westmoreland; Caroline Soulas; R. Gilberto Gonzalez; Eva-Maria Ratai; Kenneth C. Williams

Background Minocycline is a tetracycline antibiotic that has been proposed as a potential conjunctive therapy for HIV-1 associated cognitive disorders. Precise mechanism(s) of minocyclines functions are not well defined. Methods Fourteen rhesus macaques were SIV infected and neuronal metabolites measured by proton magnetic resonance spectroscopy (1H MRS). Seven received minocycline (4 mg/kg) daily starting at day 28 post-infection (pi). Monocyte expansion and activation were assessed by flow cytometry, cell traffic to lymph nodes, CD16 regulation, viral replication, and cytokine production were studied. Results Minocycline treatment decreased plasma virus and pro-inflammatory CD14+CD16+ and CD14loCD16+ monocytes, and reduced their expression of CD11b, CD163, CD64, CCR2 and HLA-DR. There was reduced recruitment of monocyte/macrophages and productively infected cells in axillary lymph nodes. There was an inverse correlation between brain NAA/Cr (neuronal injury) and circulating CD14+CD16+ and CD14loCD16+ monocytes. Minocycline treatment in vitro reduced SIV replication CD16 expression on activated CD14+CD16+ monocytes, and IL-6 production by monocytes following LPS stimulation. Conclusion Neuroprotective effects of minocycline are due in part to reduction of activated monocytes, monocyte traffic. Mechanisms for these effects include CD16 regulation, reduced viral replication, and inhibited immune activation.


PLOS ONE | 2010

Proton Magnetic Resonance Spectroscopy Reveals Neuroprotection by Oral Minocycline in a Nonhuman Primate Model of Accelerated NeuroAIDS

Eva-Maria Ratai; Jeffrey P. Bombardier; Chan-Gyu Joo; Lakshmanan Annamalai; Tricia H. Burdo; Jennifer H. Campbell; Robert Fell; Reza Hakimelahi; Julian He; Patrick Autissier; Margaret R. Lentz; Elkan F. Halpern; Eliezer Masliah; Kenneth C. Williams; Susan V. Westmoreland; R. Gilberto Gonzalez

Background Despite the advent of highly active anti-retroviral therapy (HAART), HIV-associated neurocognitive disorders continue to be a significant problem. In efforts to understand and alleviate neurocognitive deficits associated with HIV, we used an accelerated simian immunodeficiency virus (SIV) macaque model of NeuroAIDS to test whether minocycline is neuroprotective against lentiviral-induced neuronal injury. Methodology/Principal Findings Eleven rhesus macaques were infected with SIV, depleted of CD8+ lymphocytes, and studied until eight weeks post inoculation (wpi). Seven animals received daily minocycline orally beginning at 4 wpi. Neuronal integrity was monitored in vivo by proton magnetic resonance spectroscopy and post-mortem by immunohistochemistry for synaptophysin (SYN), microtubule-associated protein 2 (MAP2), and neuronal counts. Astrogliosis and microglial activation were quantified by measuring glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (IBA-1), respectively. SIV infection followed by CD8+ cell depletion induced a progressive decline in neuronal integrity evidenced by declining N-acetylaspartate/creatine (NAA/Cr), which was arrested with minocycline treatment. The recovery of this ratio was due to increases in NAA, indicating neuronal recovery, and decreases in Cr, likely reflecting downregulation of glial cell activation. SYN, MAP2, and neuronal counts were found to be higher in minocycline-treated animals compared to untreated animals while GFAP and IBA-1 expression were decreased compared to controls. CSF and plasma viral loads were lower in MN-treated animals. Conclusions/Significance In conclusion, oral minocycline alleviates neuronal damage induced by the AIDS virus.


Cancer Research | 2011

Serial Magnetic Resonance Spectroscopy Reveals a Direct Metabolic Effect of Cediranib in Glioblastoma

Heisoog Kim; Ciprian Catana; Eva-Maria Ratai; Ovidiu C. Andronesi; Dominique Jennings; Tracy T. Batchelor; Rakesh K. Jain; A. Gregory Sorensen

Proton magnetic resonance spectroscopy is increasingly used in clinical studies of brain tumor to provide information about tissue metabolic profiles. In this study, we evaluated changes in the levels of metabolites predominant in recurrent glioblastoma multiforme (rGBM) to characterize the response of rGBM to antiangiogenic therapy. We examined 31 rGBM patients treated with daily doses of cediranib, acquiring serial chemical shift imaging data at specific time points during the treatment regimen. We defined spectra from three regions of interest (ROI)--enhancing tumor (ET), peritumoral tissue, and normal tissue on the contralateral side (cNT)--in post-contrast T1-weighted images, and normalized the concentrations of N-acetylaspartate (NAA) and choline (Cho) in each ROI to the concentration of creatine in cNT (norCre). We analyzed the ratios of these normalized metabolites (i.e., NAA/Cho, NAA/norCre, and Cho/norCre) by averaging all patients and categorizing two different survival groups. Relative to pretreatment values, NAA/Cho in ET was unchanged through day 28. However, after day 28, NAA/Cho significantly increased in relation to a significant increase in NAA/norCre and a decrease in Cho/norCre; interestingly, the observed trend was reversed after day 56, consistent with the clinical course of GBM recurrence. Notably, receiver operating characteristic analysis indicated that NAA/Cho in tumor shows a high prediction to 6-month overall survival. These metabolic changes in these rGBM patients strongly suggest a direct metabolic effect of cediranib and might also reflect an antitumor response to antiangiogenic treatment during the first 2 months of treatment. Further study is needed to confirm these findings.


BMC Neuroscience | 2009

In Vivo Proton Magnetic Resonance Spectroscopy Reveals Region Specific Metabolic Responses to SIV Infection in the Macaque Brain

Eva-Maria Ratai; Sarah Pilkenton; Jane B. Greco; Margaret R. Lentz; Jeffrey P. Bombardier; Katherine W. Turk; Julian He; Chan-Gyu Joo; Vallent Lee; Susan V. Westmoreland; Elkan F. Halpern; Andrew A. Lackner; R. Gilberto Gonzalez

BackgroundIn vivo proton magnetic resonance spectroscopy (1H-MRS) studies of HIV-infected humans have demonstrated significant metabolic abnormalities that vary by brain region, but the causes are poorly understood. Metabolic changes in the frontal cortex, basal ganglia and white matter in 18 SIV-infected macaques were investigated using MRS during the first month of infection.ResultsChanges in the N-acetylaspartate (NAA), choline (Cho), myo-inositol (MI), creatine (Cr) and glutamine/glutamate (Glx) resonances were quantified both in absolute terms and relative to the creatine resonance. Most abnormalities were observed at the time of peak viremia, 2 weeks post infection (wpi). At that time point, significant decreases in NAA and NAA/Cr, reflecting neuronal injury, were observed only in the frontal cortex. Cr was significantly elevated only in the white matter. Changes in Cho and Cho/Cr were similar across the brain regions, increasing at 2 wpi, and falling below baseline levels at 4 wpi. MI and MI/Cr levels were increased across all brain regions.ConclusionThese data best support the hypothesis that different brain regions have variable intrinsic vulnerabilities to neuronal injury caused by the AIDS virus.


Neuro-oncology | 2013

Magnetic resonance spectroscopy as an early indicator of response to anti-angiogenic therapy in patients with recurrent glioblastoma: RTOG 0625/ACRIN 6677

Eva-Maria Ratai; Zheng Zhang; Bradley S. Snyder; Jerrold L. Boxerman; Yair Safriel; Robert C. McKinstry; Felix Bokstein; Mark R. Gilbert; A. Gregory Sorensen; Daniel P. Barboriak

BACKGROUND The prognosis for patients with recurrent glioblastoma remains poor. The purpose of this study was to assess the potential role of MR spectroscopy as an early indicator of response to anti-angiogenic therapy. METHODS Thirteen patients with recurrent glioblastoma were enrolled in RTOG 0625/ACRIN 6677, a prospective multicenter trial in which bevacizumab was used in combination with either temozolomide or irinotecan. Patients were scanned prior to treatment and at specific timepoints during the treatment regimen. Postcontrast T1-weighted MRI was used to assess 6-month progression-free survival. Spectra from the enhancing tumor and peritumoral regions were defined on the postcontrast T1-weighted images. Changes in the concentration ratios of n-acetylaspartate/creatine (NAA/Cr), choline-containing compounds (Cho)/Cr, and NAA/Cho were quantified in comparison with pretreatment values. RESULTS NAA/Cho levels increased and Cho/Cr levels decreased within enhancing tumor at 2 weeks relative to pretreatment levels (P = .048 and P = .016, respectively), suggesting a possible antitumor effect of bevacizumab with cytotoxic chemotherapy. Nine of the 13 patients were alive and progression free at 6 months. Analysis of receiver operating characteristic curves for NAA/Cho changes in tumor at 8 weeks revealed higher levels in patients progression free at 6 months (area under the curve = 0.85), suggesting that NAA/Cho is associated with treatment response. Similar results were observed for receiver operating characteristic curve analyses against 1-year survival. In addition, decreased Cho/Cr and increased NAA/Cr and NAA/Cho in tumor periphery at 16 weeks posttreatment were associated with both 6-month progression-free survival and 1-year survival. CONCLUSION Changes in NAA and Cho by MR spectroscopy may potentially be useful as imaging biomarkers in assessing response to anti-angiogenic treatment.


Magnetic Resonance in Medicine | 2011

Brain creatine elevation and N-Acetylaspartate reduction indicates neuronal dysfunction in the setting of enhanced glial energy metabolism in a macaque model of neuroAIDS.

Eva-Maria Ratai; Lakshmanan Annamalai; Tricia H. Burdo; Chan-Gyu Joo; Jeffrey P. Bombardier; Robert Fell; Reza Hakimelahi; Julian He; Margaret R. Lentz; Jennifer H. Campbell; Elizabeth Curran; Elkan F. Halpern; Eliezer Masliah; Susan V. Westmoreland; Kenneth C. Williams; R. Gilberto Gonzalez

Proton magnetic resonance spectroscopy has emerged as one of the most informative neuroimaging modalities for studying the effect of HIV infection in the brain, providing surrogate markers by which to assess disease progression and monitor treatment. Reductions in the level of N‐Acetylaspartate and N‐Acetylaspartate/creatine are established markers of neuronal injury or loss. However, the biochemical basis of altered creatine levels in neuroAIDS is not well understood. This study used a rapid progression macaque model of neuroAIDS to elucidate the changes in creatine. As the disease progressed, proton magnetic resonance spectroscopy revealed a decrease in N‐Acetylaspartate, indicative of neuronal injury, and an increase in creatine yet to be elucidated. Subsequently, immunohistochemistry and stereology measures of decreased synaptophysin, microtubule‐associated protein 2, and neuronal density confirmed neuronal injury. Furthermore, increases in ionized calcium binding adaptor molecule 1 and glial fibrillary acidic protein indicated microglial and astroglial activation, respectively. Given these data, elevated creatine may reflect enhanced high‐energy phosphate turnover in highly metabolizing activated astrocytes and microglia. Magn Reson Med, 2011.


Amyotrophic Lateral Sclerosis | 2010

A phase I, pharmacokinetic, dosage escalation study of creatine monohydrate in subjects with amyotrophic lateral sclerosis

Nazem Atassi; Eva-Maria Ratai; David J. Greenblatt; Darlene Pulley; Yanli Zhao; Jeffery Bombardier; Stuart Wallace; Joanna Eckenrode; Merit Cudkowicz; Allitia DiBernardo

Abstract Creatine monohydrate (creatine) has potential neuroprotective properties and is a commonly used supplement in amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Minimum therapeutic and maximum tolerated dosages of creatine are not yet known, nor is it known what systemic plasma concentrations result from specific dosage regimens. The objectives of this study were to establish steady-state plasma pharmacokinetics of creatine at several dosages, and to evaluate the effects of creatine on brain metabolites using proton magnetic resonance spectroscopy (1H-MRS). Six participants with ALS received creatine at three weekly escalating oral dosages (5, 10, and 15 g b.i.d.). Plasma creatine levels and MR spectra were obtained at baseline and with each dosage increase. Mean pre-dose steady-state creatine plasma concentrations were 20.3, 39.3, and 61.5 ug/ml at 5, 10, and 15 g b.i.d., respectively. Creatine spectra increased by 8% (p = 0.06) and glutamate + glutamine signals decreased by 17% (p = 0.039) at higher dosages. There were no safety concerns at any of the dosages. In conclusion, creatine plasma concentrations increased in a dose-dependent manner. Creatine appears to cross the blood-brain barrier, and oral administration of 15 g b.i.d. is associated with increased in vivo brain creatine concentrations and decreased glutamate concentrations.

Collaboration


Dive into the Eva-Maria Ratai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolyn E. Mountford

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saadallah Ramadan

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge