Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Mracsko is active.

Publication


Featured researches published by Eva Mracsko.


Brain | 2011

Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke

Arthur Liesz; Wei Zhou; Eva Mracsko; Simone Karcher; Henrike Bauer; Sönke Schwarting; Li Sun; Dunja Bruder; Sabine Stegemann; Adelheid Cerwenka; Clemens Sommer; Alexander H. Dalpke; Roland Veltkamp

T lymphocytes are increasingly recognized as key modulators of detrimental inflammatory cascades in acute ischaemic stroke, but the potential of T cell-targeted therapy in brain ischaemia is largely unexplored. Here, we characterize the effect of inhibiting leukocyte very late antigen-4 and endothelial vascular cell adhesion molecule-1-mediated brain invasion-currently the most effective strategy in primary neuroinflammatory brain disease in murine ischaemic stroke models. Very late antigen-4 blockade by monoclonal antibodies improved outcome in models of moderate stroke lesions by inhibiting cerebral leukocyte invasion and neurotoxic cytokine production without increasing the susceptibility to bacterial infections. Gene silencing of the endothelial very late antigen-4 counterpart vascular cell adhesion molecule-1 by in vivo small interfering RNA injection resulted in an equally potent reduction of infarct volume and post-ischaemic neuroinflammation. Furthermore, very late antigen-4-inhibition effectively reduced the post-ischaemic vascular cell adhesion molecule-1 upregulation, suggesting an additional cross-signalling between invading leukocytes and the cerebral endothelium. Dissecting the specific impact of leukocyte subpopulations showed that invading T cells, via their humoral secretion (interferon-γ) and immediate cytotoxic mechanisms (perforin), were the principal pathways for delayed post-ischaemic tissue injury. Thus, targeting T lymphocyte-migration represents a promising therapeutic approach for ischaemic stroke.


Frontiers in Cellular Neuroscience | 2014

Neuroinflammation after intracerebral hemorrhage

Eva Mracsko; Roland Veltkamp

Spontaneous intracerebral hemorrhage (ICH) is a particularly severe type of stroke for which no specific treatment has been established yet. Although preclinical models of ICH have substantial methodological limitations, important insight into the pathophysiology has been gained. Mounting evidence suggests an important contribution of inflammatory mechanisms to brain damage and potential repair. Neuroinflammation evoked by intracerebral blood involves the activation of resident microglia, the infiltration of systemic immune cells and the production of cytokines, chemokines, extracellular proteases and reactive oxygen species (ROS). Previous studies focused on innate immunity including microglia, monocytes and granulocytes. More recently, the role of adaptive immune cells has received increasing attention. Little is currently known about the interactions among different immune cell populations in the setting of ICH. Nevertheless, immunomodulatory strategies are already being explored in ICH. To improve the chances of translation from preclinical models to patients, a better characterization of the neuroinflammation in patients is desirable.


The Journal of Neuroscience | 2013

Boosting Regulatory T Cells Limits Neuroinflammation in Permanent Cortical Stroke

Arthur Liesz; Wei Zhou; Shin Young Na; Günter J. Hämmerling; Natalio Garbi; Simone Karcher; Eva Mracsko; Johannes Backs; Serge Rivest; Roland Veltkamp

Inflammatory mechanisms contribute substantially to secondary tissue injury after brain ischemia. Regulatory T cells (Tregs) are key endogenous modulators of postischemic neuroinflammation. We investigated the potential of histone deacetylase inhibition (HDACi) to enhance Treg potency for experimental stroke in mice. HDACi using trichostatin A increased the number of Tregs and boosted their immunosuppressive capacity and interleukin (IL)-10 expression. In vivo treatment reduced infarct volumes and behavioral deficits after cortical brain ischemia, attenuated cerebral proinflammatory cytokine expression, and increased numbers of brain-invading Tregs. A similar effect was obtained using tubastatin, a specific inhibitor of HDAC6 and a key HDAC in Foxp3 regulation. The neuroprotective effect of HDACi depended on the presence of Foxp3+ Tregs, and in vivo and in vitro studies showed that the anti-inflammatory cytokine IL-10 was their main mediator. In summary, modulation of Treg function by HDACi is a novel and potent target to intervene at the center of neuroinflammation. Furthermore, this novel concept of modulating endogenous immune mechanisms might be translated to a broad spectrum of diseases, including primary neuroinflammatory and neurodegenerative disorders.


PLOS ONE | 2011

FTY720 Reduces Post-Ischemic Brain Lymphocyte Influx but Does Not Improve Outcome in Permanent Murine Cerebral Ischemia

Arthur Liesz; Li Sun; Wei Zhou; Sönke Schwarting; Eva Mracsko; Markus Zorn; Henrike Bauer; Clemens Sommer; Roland Veltkamp

Background The contribution of neuroinflammation and specifically brain lymphocyte invasion is increasingly recognised as a substantial pathophysiological mechanism after stroke. FTY720 is a potent treatment for primary neuroinflammatory diseases by inhibiting lymphocyte circulation and brain immigration. Previous studies using transient focal ischemia models showed a protective effect of FTY720 but did only partially characterize the involved pathways. We tested the neuroprotective properties of FTY720 in permanent and transient cortical ischemia and analyzed the underlying neuroimmunological mechanisms. Methodology/Principal Findings FTY720 treatment resulted in substantial reduction of circulating lymphocytes while blood monocyte counts were significantly increased. The number of histologically and flow cytometrically analyzed brain invading T- and B lymphocytes was significantly reduced in FTY720 treated mice. However, despite testing a variety of treatment protocols, infarct volume and behavioural dysfunction were not reduced 7d after permanent occlusion of the distal middle cerebral artery (MCAO). Additionally, we did not measure a significant reduction in infarct volume at 24h after 60 min filament-induced MCAO, and did not see differences in brain edema between PBS and FTY720 treatment. Analysis of brain cytokine expression revealed complex effects of FTY720 on postischemic neuroinflammation comprising a substantial reduction of delayed proinflammatory cytokine expression at 3d but an early increase of IL-1β and IFN-γ at 24 h after MCAO. Also, serum cytokine levels of IL-6 and TNF-α were increased in FTY720 treated animals compared to controls. Conclusions/Significance In the present study we were able to detect a reduction of lymphocyte brain invasion by FTY720 but could not achieve a significant reduction of infarct volumes and behavioural dysfunction. This lack of neuroprotection despite effective lymphopenia might be attributed to a divergent impact of FTY720 on cytokine expression and possible activation of innate immune cells after brain ischemia.


Brain Behavior and Immunity | 2014

Differential effects of sympathetic nervous system and hypothalamic–pituitary–adrenal axis on systemic immune cells after severe experimental stroke

Eva Mracsko; Arthur Liesz; Simone Karcher; Markus Zorn; Ferenc Bari; Roland Veltkamp

Infectious complications are the leading cause of death in the post-acute phase of stroke. Post-stroke immunodeficiency is believed to result from neurohormonal dysregulation of the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis. However, the differential effects of these neuroendocrine systems on the peripheral immune cells are only partially understood. Here, we determined the impact of the hormones of the SNS and HPA on distinct immune cell populations and characterized their interactions after stroke. At various time points after cortical or extensive hemispheric cerebral ischemia, plasma cortisone, corticosterone, metanephrine and adrenocorticotropic hormone (ACTH) levels were measured in mice. Leukocyte subpopulations were flow cytometrically analyzed in spleen and blood. To investigate their differential sensitivity to stress hormones, splenocytes were incubated in vitro with prednisolone, epinephrine and their respective receptor blockers. Glucocorticoid receptor (GCR) and beta2-adrenergic receptor (β2-AR) on leukocyte subpopulations were quantified by flow cytometry. In vivo effects of GCR and selective β2-AR blockade, respectively, were defined on serum hormone concentrations, lymphopenia and interferon-γ production after severe ischemia. We found elevated cortisone, corticosterone and metanephrine levels and associated lymphocytopenia only after extensive brain infarction. Prednisolone resulted in a 5 times higher cell death rate of splenocytes than epinephrine in vitro. Prednisolone and epinephrine-induced leukocyte cell death was prevented by GCR and β2-AR blockade, respectively. In vivo, only GCR blockade prevented post ischemic lymphopenia whereas β2-AR preserved interferon-γ secretion by lymphocytes. GCR blockade increased metanephrine levels in vivo and prednisolone, in turn, decreased β2-AR expression on lymphocytes. In conclusion, mediators of the SNS and the HPA axis differentially affect the systemic immune system after stroke. Moreover, our findings suggest a negative-feedback of corticosteroids on the sympathetic axis which may control the post-stroke stress-reaction. This complex interplay between the HPA and the SNS after stroke has to be considered when targeting the neurohormonal systems in the post acute phase of severe stroke.


Stroke | 2015

Amplification of Regulatory T Cells Using a CD28 Superagonist Reduces Brain Damage After Ischemic Stroke in Mice

Shin-Young Na; Eva Mracsko; Arthur Liesz; Thomas Hünig; Roland Veltkamp

Background and Purpose— Neuroinflammation plays an important role in ischemic brain injury. Regulatory T cells (Treg) are important endogenous immune modulators. We tested the hypothesis that Treg amplification with a CD28 superagonistic monoclonal antibody (CD28SA) reduces brain damage in murine cerebral ischemia. Methods— Cerebral ischemia was induced by coagulation of the distal middle cerebral artery or by 60 minutes filament occlusion of the proximal middle cerebral artery in C57BL6 mice. 150 &mgr;g CD28SA was injected intraperitoneally 3 or 6 hours after ischemia onset. Outcome was determined by infarct volumetry and behavioral testing. Brain-infiltrating leukocyte subpopulations were analyzed by flow cytometry and immunohistochemistry 3 and 7 days after middle cerebral artery occlusion. Results— CD28SA reduced infarct size in both models and attenuated functional deficit 7 days after stroke induction. Mice treated with CD28SA increased numbers of Treg in spleen and brain. Tregs were functionally active and migrated into the brain where they accumulated and proliferated in the peri-infarct area. More than 60% of brain infiltrating Treg produced interleukin-10 in CD28SA compared with 30% in control. Conclusions— In vivo expansion and amplification of Treg by CD28SA attenuates the inflammatory response and improves outcome after experimental stroke.


Stroke | 2014

Leukocyte Invasion of the Brain After Experimental Intracerebral Hemorrhage in Mice

Eva Mracsko; Ehsan Javidi; Shin-Young Na; Alexandra Kahn; Arthur Liesz; Roland Veltkamp

Background and Purpose— Neuroinflammatory processes contribute to secondary neuronal damage after intracerebral hemorrhage. We aimed to characterize the time course of brain immigration of different leukocyte subsets after striatal injection of either autologous blood or collagenase in mice. Methods— Intracerebral hemorrhage was induced by injection of either autologous blood (20 &mgr;L) or collagenase (0.03 U) in C57Bl/6J mice. Hematoma volumetry was performed on cryosections. Blood volume was measured by hemoglobin spectrophotometry. Leukocytes were isolated from hemorrhagic hemisphere 1, 3, 5, and 14 days after intracerebral hemorrhage, stained for leukocyte markers, and measured by flow cytometry. Heterologous blood injection from CD45.1 mice was used to investigate the origin of brain-invading leukocytes. Results— Collagenase injection induced a larger hematoma volume but a similar blood content compared with blood injection. Cerebral leukocyte infiltration in the hemorrhagic hemisphere was similar in both models. The majority of leukocytes isolated from the brain originated from the circulation. CD4+ T lymphocytes were the predominant brain leukocyte population in both models. However, cerebral granulocyte counts were higher after collagenase compared with blood injection. Conclusions— Brain infiltration of systemic immune cells is similar in both murine intracerebral hemorrhage models. The pathophysiological impact of invading leukocytes and, in particular, of T cells requires further investigation.


Annals of Neurology | 2015

Idarucizumab Improves Outcome in Murine Brain Hemorrhage Related to Dabigatran

Shin-Young Na; Eva Mracsko; Joanne van Ryn; Roland Veltkamp

Lack of specific antidotes is a major concern in intracerebral hemorrhage (ICH) related to direct anticoagulants including dabigatran (OAC‐ICH). We examined the efficacy of idarucizumab, an antibody fragment binding to dabigatran, in a mouse model of OAC‐ICH. Dabigatran etexilate (DE) dose‐dependently prolonged diluted thrombin time and tail‐vein bleeding time, which were reversed by idarucizumab. Pretreatment with DE increased intracerebral hematoma volume and cerebral hemoglobin content. Idarucizumab in equimolar dose prevented excess hematoma expansion for both DE doses. In more extensive ICH, idarucizumab significantly reduced mortality. Thus, idarucizumab prevents excess intracerebral hematoma formation in mice anticoagulated with dabigatran and reduces mortality. Ann Neurol 2015;78:137–141


The Journal of Neuroscience | 2014

Antigen Dependently Activated Cluster of Differentiation 8-Positive T Cells Cause Perforin-Mediated Neurotoxicity in Experimental Stroke

Eva Mracsko; Arthur Liesz; Ana Stojanovic; Wilson Pak-Kin Lou; Matthias Osswald; Wei Zhou; Simone Karcher; Frank Winkler; Ana Martin-Villalba; Adelheid Cerwenka; Roland Veltkamp

Neuroinflammation plays a key role in secondary brain damage after stroke. Although deleterious effects of proinflammatory cytokines are well characterized, direct cytotoxic effects of invading immune cells on the ischemic brain and the importance of their antigen-dependent activation are essentially unknown. Here we examined the effects of adaptive and innate immune cells—cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells—that share the direct perforin-mediated cytotoxic pathway on outcome after cerebral ischemia in mice. Although CTLs and NK cells both invaded the ischemic brain, only brain-infiltrating CTLs but not NK cells were more activated than their splenic counterparts. Depletion of CTLs decreased infarct volumes and behavioral deficit in two ischemia models, whereas NK cell depletion had no effect. Correspondingly, adoptive CTL transfer from wild-type into Rag1 knock-out mice increased infarct size. Adoptive CTL transfer from perforin knock-out or interferon-γ knock-out mice into Rag1 knock-out mice revealed that CTL neurotoxicity was mediated by perforin. Accordingly, CTLs isolated from wild-type or interferon-γ knock-out but not from perforin knock-out mice induced neuronal cell death in vitro. CTLs derived from ovalbumin-specific T-cell receptor transgenic mice were not activated and infiltrated less into the ischemic brain compared with wild-type CTLs. Their transfer did not increase the infarct size of Rag1 knock-out mice, indicating antigen-dependent activation as an essential component of CTL neurotoxicity. Our findings underscore the importance of antigen-dependent, direct cytotoxic immune responses in stroke and suggest modulation of CTLs and their effector pathways as a potential new strategy for stroke therapy.


Stroke | 2017

Genome-Wide Analysis of the Circulating miRNome After Cerebral Ischemia Reveals a Reperfusion-Induced MicroRNA Cluster

Stefan Uhlmann; Eva Mracsko; Ehsan Javidi; Sarah Lamble; Ana Teixeira; Agnes Hotz-Wagenblatt; Karl-Heinz Glatting; Roland Veltkamp

Background and Purpose— Circulating microRNAs (miRNAs) are emerging biomarkers for stroke because of their high stability in the bloodstream and association with pathophysiologic conditions. However, the circulating whole-genome miRNAs (miRNome) has not been characterized comprehensively in the acute phase of stroke. Methods— We profiled the circulating miRNome in mouse models of acute ischemic and hemorrhagic stroke by next-generation sequencing. Stroke models were compared with sham-operated and naive mice to identify deregulated circulating miRNAs. Top-ranked miRNAs were validated and further characterized by quantitative reverse transcription polymerase chain reaction. Results— We discovered 24 circulating miRNAs with an altered abundance in the circulation 3 hours after ischemia, whereas the circulating miRNome was not altered after intracerebral hemorrhage compared with sham-operated mice. Among the upregulated miRNAs in ischemia, the top-listed miR-1264/1298/448 cluster was strongly dependent on reperfusion in different ischemia models. A time course experiment revealed that the miR-1264/1298/448 cluster peaked in the circulation around 3 hours after reperfusion and gradually decreased thereafter. Conclusions— Alteration of the miRNome in the circulation is associated with cerebral ischemia/reperfusion, but not hemorrhage, suggesting a potential to serve as biomarkers for reperfusion in the acute phase. The pathophysiological role of reperfusion-inducible miR-1264/1298/448 cluster, which is located on chromosome X within the introns of the serotonin receptor HTR2C, requires further investigation.

Collaboration


Dive into the Eva Mracsko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Zhou

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander H. Dalpke

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Li Sun

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adelheid Cerwenka

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge