Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva R. Chin is active.

Publication


Featured researches published by Eva R. Chin.


Science Translational Medicine | 2016

NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation

Dongryeol Ryu; Hongbo Zhang; Eduardo R. Ropelle; Vincenzo Sorrentino; Davi A. G. Mázala; Laurent Mouchiroud; Philip Marshall; Matthew D. Campbell; Amir S. Ali; Gary Knowels; Stéphanie Bellemin; Shama R. Iyer; Xu Wang; Karim Gariani; Anthony A. Sauve; Carles Cantó; Kevin E. Conley; Ludivine Walter; Richard M. Lovering; Eva R. Chin; Bernard J. Jasmin; David J. Marcinek; Keir J. Menzies; Johan Auwerx

NAD+ treatment can reverse the functional decline in degenerating muscles. Making muscle work better Degenerating muscle—whether from muscular dystrophies, myopathies, or other diseases—loses its mitochondria (the energy supply) and an essential cofactor nicotinamide adenine dinucleotide (NAD+), while gaining an extra load of enzymes that use up NAD+, as reported by Ryu and colleagues. The resulting loss of NAD+ is exacerbated by a drop in NAD+ biosynthetic enzymes, such as NAMPT. Restoration of NAD+ levels in either mice or worms with disease-like degenerating muscles improved muscle function, a consequence of more mitochondria, more muscle structural proteins, and a decrease in inflammation. The authors suggest that NAD+ repletion may be a successful therapeutic approach for a number of muscle-wasting diseases. Neuromuscular diseases are often caused by inherited mutations that lead to progressive skeletal muscle weakness and degeneration. In diverse populations of normal healthy mice, we observed correlations between the abundance of mRNA transcripts related to mitochondrial biogenesis, the dystrophin-sarcoglycan complex, and nicotinamide adenine dinucleotide (NAD+) synthesis, consistent with a potential role for the essential cofactor NAD+ in protecting muscle from metabolic and structural degeneration. Furthermore, the skeletal muscle transcriptomes of patients with Duchene’s muscular dystrophy (DMD) and other muscle diseases were enriched for various poly[adenosine 5′-diphosphate (ADP)–ribose] polymerases (PARPs) and for nicotinamide N-methyltransferase (NNMT), enzymes that are major consumers of NAD+ and are involved in pleiotropic events, including inflammation. In the mdx mouse model of DMD, we observed significant reductions in muscle NAD+ levels, concurrent increases in PARP activity, and reduced expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ biosynthesis. Replenishing NAD+ stores with dietary nicotinamide riboside supplementation improved muscle function and heart pathology in mdx and mdx/Utr−/− mice and reversed pathology in Caenorhabditis elegans models of DMD. The effects of NAD+ repletion in mdx mice relied on the improvement in mitochondrial function and structural protein expression (α-dystrobrevin and δ-sarcoglycan) and on the reductions in general poly(ADP)-ribosylation, inflammation, and fibrosis. In combination, these studies suggest that the replenishment of NAD+ may benefit patients with muscular dystrophies or other neuromuscular degenerative conditions characterized by the PARP/NNMT gene expression signatures.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2014

Telomeres Shorten in Response to Oxidative Stress in Mouse Skeletal Muscle Fibers

Andrew T. Ludlow; Espen E. Spangenburg; Eva R. Chin; Wen Hsing Cheng; Stephen M. Roth

Aging phenotypes are dictated by myriad cellular changes including telomere shortening. In most tissues, telomere shortening is accelerated during replication if unrepaired oxidative damage to telomere sequences is present. However, the effect of reactive oxygen species exposure on skeletal muscle telomeres is unknown. We sought to determine if oxidative stress shortens telomeres in isolated adult rodent skeletal muscle fibers. Flexor digitorum brevis muscles were dissected from male mice (C57BL/6, long telomere and CAST/Ei, wild-derived, short telomere) and dissociated into single fibers. Fibers were cultured at an oxygen tension of 2%-5% for 5 days in control, hydrogen peroxide (oxidant), or a combination of N-acetylcysteine (antioxidant) and oxidant containing media. Telomere length, telomerase enzyme activity, and protein content of TRF1 and TRF2 were subsequently measured. In both strains, oxidative stress resulted in significant telomere shortening in isolated skeletal muscle fibers, likely by different mechanisms. Telomerase activity was not altered by oxidative stress treatment but was significantly different between strains, with greater telomerase activity in long-telomere-bearing C57BL/6 mice. These results provide important insights into mechanisms by which oxidative stress could shorten skeletal muscle telomeres.


Diabetes | 2015

Increased Skeletal Muscle Capillarization Independently Enhances Insulin Sensitivity in Older Adults After Exercise Training and Detraining

Steven J. Prior; Andrew P. Goldberg; Heidi K. Ortmeyer; Eva R. Chin; Dapeng Chen; Jacob B. Blumenthal; Alice S. Ryan

Intramuscular signaling and glucose transport mechanisms contribute to improvements in insulin sensitivity after aerobic exercise training. This study tested the hypothesis that increases in skeletal muscle capillary density (CD) also contribute to exercise-induced improvements in whole-body insulin sensitivity (insulin-stimulated glucose uptake per unit plasma insulin [M/I]) independent of other mechanisms. The study design included a 6-month aerobic exercise training period followed by a 2-week detraining period to eliminate short-term effects of exercise on intramuscular signaling and glucose transport. Before and after exercise training and detraining, 12 previously sedentary older (65 ± 3 years) men and women underwent research tests, including hyperinsulinemic-euglycemic clamps and vastus lateralis biopsies. Exercise training increased Vo2max (2.2 ± 0.2 vs. 2.5 ± 0.2 L/min), CD (313 ± 13 vs. 349 ± 18 capillaries/mm2), and M/I (0.041 ± 0.005 vs. 0.051 ± 0.007 μmol/kg fat-free mass/min) (P < 0.05 for all). Exercise training also increased the insulin activation of glycogen synthase by 60%, GLUT4 expression by 16%, and 5′ AMPK-α1 expression by 21%, but these reverted to baseline levels after detraining. Conversely, CD and M/I remained 15% and 18% higher after detraining, respectively (P < 0.05), and the changes in M/I (detraining minus baseline) correlated directly with changes in CD in regression analysis (partial r = 0.70; P = 0.02). These results suggest that an increase in CD is one mechanism contributing to sustained improvements in glucose metabolism after aerobic exercise training.


Mayo Clinic Proceedings | 2014

Exercise biology and medicine: Innovative research to improve global health

Marcas M. Bamman; Dan M. Cooper; Frank W. Booth; Eva R. Chin; P. Darrell Neufer; Scott Trappe; J. Timothy Lightfoot; William E. Kraus; Michael J. Joyner

The purpose of this Commentary is to emphasize the powerful impact rigorous, interdisciplinary exercise medicine research can have on clinical practice and public health policy. Because exercise profoundly influences virtually all aspects of human biology, research on dose-response relationships, exercise-drug/device interactions, exercise genomics, personalized medicine, disease and population specificity, and behavioral medicine offers enormous potential for novel insights into health and disease. With this core concept in mind, here we: (i) briefly summarize the opposing powers of exercise and chronic inactivity; and (ii) discuss the decided advantages of innovative exercise research to advance translational science and ultimately global health.


Frontiers in Cellular Neuroscience | 2015

Activation of the endoplasmic reticulum stress response in skeletal muscle of G93A*SOD1 amyotrophic lateral sclerosis mice

Dapeng Chen; Yan Wang; Eva R. Chin

Mutations in Cu/Zn superoxide dismutase (SOD1) are one of the genetic causes of Amyotrophic Lateral Sclerosis (ALS). Although the primary symptom of ALS is muscle weakness, the link between SOD1 mutations, cellular dysfunction and muscle atrophy and weakness is not well understood. The purpose of this study was to characterize cellular markers of ER stress in skeletal muscle across the lifespan of G93A*SOD1 (ALS-Tg) mice. Muscles were obtained from ALS-Tg and age-matched wild type (WT) mice at 70d (pre-symptomatic), 90d and 120–140d (symptomatic) and analyzed for ER stress markers. In white gastrocnemius (WG) muscle, ER stress sensors PERK and IRE1α were upregulated ~2-fold at 70d and remained (PERK) or increased further (IRE1α) at 120–140d. Phospho-eIF2α, a downstream target of PERK and an inhibitor of protein translation, was increased by 70d and increased further to 12.9-fold at 120–140d. IRE1α upregulation leads to increased splicing of X-box binding protein 1 (XBP-1) to the XBP-1s isoform. XBP-1s transcript was increased at 90d and 120–140d indicating activation of IRE1α signaling. The ER chaperone/heat shock protein Grp78/BiP was upregulated 2-fold at 70d and 90d and increased to 6.1-fold by 120–140d. The ER-stress-specific apoptotic signaling protein CHOP was upregulated 2-fold at 70d and 90d and increased to 13.3-fold at 120–140d indicating progressive activation of an apoptotic signal in muscle. There was a greater increase in Grp78/BiP and CHOP in WG vs. the more oxidative red gastrocnemius (RG) ALS-Tg at 120–140d indicating greater ER stress and apoptosis in fast glycolytic muscle. These data show that the ER stress response is activated in skeletal muscle of ALS-Tg mice by an early pre-symptomatic age and increases with disease progression. These data suggest a mechanism by which myocellular ER stress leads to reduced protein translation and contributes to muscle atrophy and weakness in ALS.


American Journal of Physiology-cell Physiology | 2015

SERCA1 overexpression minimizes skeletal muscle damage in dystrophic mouse models

Davi A. G. Mázala; Stephen J.P. Pratt; Dapeng Chen; Jeffery D. Molkentin; Richard M. Lovering; Eva R. Chin

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting secondary to repeated muscle damage and inadequate repair. Elevations in intracellular free Ca²⁺ have been implicated in disease progression, and sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase 1 (SERCA1) overexpression has been shown to ameliorate the dystrophic phenotype in mdx mice. The purpose of this study was to assess the effects of SERCA1 overexpression in the more severe mdx/Utr(-/-) mouse model of DMD. Mice overexpressing SERCA1 were crossed with mdx/Utr ± mice to generate mdx/Utr(-/-)/+SERCA1 mice and compared with wild-type (WT), WT/+SERCA1, mdx/+SERCA1, and genotype controls. Mice were assessed at ∼12 wk of age for changes in Ca²⁺ handling, muscle mass, quadriceps torque, markers of muscle damage, and response to repeated eccentric contractions. SERCA1-overexpressing mice had a two- to threefold increase in maximal sarcoplasmic reticulum Ca²⁺-ATPase activity compared with WT which was associated with normalization in body mass for both mdx/+SERCA1 and mdx/Utr(-/-)/+SERCA1. Torque deficit in the quadriceps after eccentric injury was 2.7-fold greater in mdx/Utr(-/-) vs. WT mice, but only 1.5-fold greater in mdx/Utr(-/-)/+SERCA1 vs. WT mice, an attenuation of 44%. Markers of muscle damage (% centrally nucleated fibers, necrotic area, and serum creatine kinase levels) were higher in both mdx and mdx/Utr(-/-) vs. WT, and all were attenuated by overexpression of SERCA1. These data indicate that SERCA1 overexpression ameliorates functional impairments and cellular markers of damage in a more severe mouse model of DMD. These findings support targeting intracellular Ca²⁺ control as a therapeutic approach for DMD.


Skeletal Muscle | 2016

The SH3 and cysteine-rich domain 3 (Stac3) gene is important to growth, fiber composition, and calcium release from the sarcoplasmic reticulum in postnatal skeletal muscle

Xiaofei Cong; Jonathan Doering; Davi A. G. Mázala; Eva R. Chin; Robert W. Grange; Honglin Jiang

Background The SH3 and cysteine-rich domain 3 (Stac3) gene is specifically expressed in the skeletal muscle. Stac3 knockout mice die perinatally. In this study, we determined the potential role of Stac3 in postnatal skeletal muscle growth, fiber composition, and contraction by generating conditional Stac3 knockout mice. Methods We disrupted the Stac3 gene in 4-week-old male mice using the Flp-FRT and tamoxifen-inducible Cre-loxP systems. Results RT-qPCR and western blotting analyses of the limb muscles of target mice indicated that nearly all Stac3 mRNA and more than 70 % of STAC3 protein were deleted 4 weeks after tamoxifen injection. Postnatal Stac3 deletion inhibited body and limb muscle mass gains. Histological staining and gene expression analyses revealed that postnatal Stac3 deletion decreased the size of myofibers and increased the percentage of myofibers containing centralized nuclei, with no effect on the total myofiber number. Grip strength and grip time tests indicated that postnatal Stac3 deletion decreased limb muscle strength in mice. Muscle contractile tests revealed that postnatal Stac3 deletion reduced electrostimulation-induced but not the ryanodine receptor agonist caffeine-induced maximal force output in the limb muscles. Calcium imaging analysis of single flexor digitorum brevis myofibers indicated that postnatal Stac3 deletion reduced electrostimulation- but not caffeine-induced calcium release from the sarcoplasmic reticulum. Conclusions This study demonstrates that STAC3 is important to myofiber hypertrophy, myofiber-type composition, contraction, and excitation-induced calcium release from the sarcoplasmic reticulum in the postnatal skeletal muscle. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0088-4) contains supplementary material, which is available to authorized users.


Physiological Genomics | 2011

Androgen receptor polyglutamine repeat length affects receptor activity and C2C12 cell development

Ryan L. Sheppard; Espen E. Spangenburg; Eva R. Chin; Stephen M. Roth

Testosterone (T) has an anabolic effect on skeletal muscle and is believed to exert its local effects via the androgen receptor (AR). The AR harbors a polymorphic stretch of glutamine repeats demonstrated to inversely affect receptor transcriptional activity in prostate and kidney cells. The effects of AR glutamine repeat length on skeletal muscle are unknown. In this study we examined the effect of AR CAG repeat length on AR function in C2C12 cells. AR expression vectors harboring 14, 24, and 33 CAG repeats were used to assess AR transcriptional activity. C2C12 cell proliferation, differentiation, gene expression, myotube formation, and myonuclear fusion index were assessed. Transcriptional activity increased with increasing repeat length and in response to testosterone (AR14 = 3.91 ± 0.26, AR24 = 25.21 ± 1.72, AR33 = 36.08 ± 3.22 relative light units; P < 0.001). Ligand activation was increased for AR33 (2.10 ± 0.04) compared with AR14 (1.54 ± 0.09) and AR24 (1.57 ± 0.05, P < 0.001). AR mRNA expression was elevated in each stably transfected line. AR33 cell proliferation (20,512.3 ± 1,024.0) was decreased vs. AR14 (27,604.17 ± 1,425.3; P < 0.001) after 72 h. Decreased CK activity in AR14 cells (54.9 ± 2.9 units/μg protein) in comparison to AR33 (70.8 ± 8.1) (P < 0.05) was noted. The myonuclear fusion index was lower for AR14 (15.21 ± 3.24%) and AR33 (9.97 ± 3.14%) in comparison to WT (35.07 ± 5.60%, P < 0.001). AR14 and AR33 cells also displayed atypical myotube morphology. RT-PCR revealed genotype differences in myostatin and myogenin expression. We conclude that AR polyglutamine repeat length is directly associated with transcriptional activity and alters the growth and development of C2C12 cells. This polymorphism may contribute to the heritability of muscle mass in humans.


American Journal of Physiology-cell Physiology | 2014

Perturbations in intracellular Ca2+ handling in skeletal muscle in the G93A*SOD1 mouse model of amyotrophic lateral sclerosis.

Eva R. Chin; Dapeng Chen; Kostyantyn D. Bobyk; Davi A. G. Mázala

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by skeletal muscle atrophy and weakness, ultimately leading to respiratory failure. The purpose of this study was to assess changes in skeletal muscle excitation-contraction (E-C) coupling and intracellular Ca(2+) handling during disease progression in the G93A*SOD1 ALS transgenic (ALS Tg) mouse model. To assess E-C coupling, single muscle fibers were electrically stimulated (10-150 Hz), and intracellular free Ca(2+) concentration was assessed using fura-2. There were no differences in peak fura-2 ratio at any stimulation frequency at 70 days (early presymptomatic). However, at 90 days (late presymptomatic) and 120-140 days (symptomatic), fura-2 ratio was increased at 10 Hz in ALS Tg compared with wild-type (WT) fibers (0.670 ± 0.02 vs. 0.585 ± 0.02 for 120-140 days; P < 0.05). There was also a significant increase in resting fura-2 ratio at 90 days (0.351 ± 0.008 vs. 0.390 ± 0.009 in WT vs. ALS Tg; P < 0.05) and 120-140 days (0.374 ± 0.001 vs. 0.415 ± 0.003 in WT vs. ALS Tg; P < 0.05). These increases in intracellular Ca(2+) in ALS Tg muscle were associated with reductions in the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase proteins SERCA1 (to 54% and 19% of WT) and SERCA2 (to 56% and 11% of WT) and parvalbumin (to 80 and 62% of WT) in gastrocnemius muscle at 90 and 120-140 days, respectively. There was no change in dihydropyridine receptor/l-type Ca(2+) channel at any age. Overall, these data demonstrate minimal changes in electrically evoked Ca(2+) transients but elevations in intracellular Ca(2+) attributable to decreased Ca(2+)-clearance proteins. These data suggest that elevations in cellular Ca(2+) could contribute to muscle weakness during disease progression in ALS mice.


American Journal of Physiology-cell Physiology | 2015

The role of proteases in excitation-contraction coupling failure in muscular dystrophy

Davi A. G. Mázala; Robert W. Grange; Eva R. Chin

Duchenne muscular dystrophy (DMD) is one of the most frequent types of muscular dystrophy. Alterations in intracellular calcium (Ca(2+)) handling are thought to contribute to the disease severity in DMD, possibly due to the activation of Ca(2+)-activated proteases. The purpose of this study was twofold: 1) to determine whether prolonged excitation-contraction (E-C) coupling disruption following repeated contractions is greater in animals lacking both dystrophin and utrophin (mdx/Utr(-/-)) compared with mice lacking only dystrophin (mdx); and 2) to assess whether protease inhibition can prevent E-C coupling failure following repeated tetani in these dystrophic mouse models. Excitation-contraction coupling was assessed using Fura-2 ratio, as an index of intracellular free Ca(2+) concentration, in response to electrical stimulation of single muscle fibers from the flexor digitorum brevis muscle. Resting Fura-2 ratio was higher in dystrophic compared with control (Con) fibers, but peak Fura-2 ratios during stimulation were similar in dystrophic and Con fibers. One hour after a series of repeated tetani, peak Fura-2 ratios were reduced by 30 ± 5.6%, 23 ± 2%, and 36 ± 3.1% in mdx, mdx/Utr(+/-), and mdx/Utr(-/-), respectively, with the greatest reduction in mdx/Utr(-/-) fibers (P < 0.05). Protease inhibition attenuated this decrease in peak Fura-2 ratio. These data indicate that E-C coupling impairment after repeated contractions is greatest in fibers lacking both dystrophin and utrophin and that prevention of protease activation can mitigate the prolonged E-C coupling impairment. These data further suggest that acute protease inhibition may be useful in reducing muscle weakness in DMD.

Collaboration


Dive into the Eva R. Chin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marybeth Brown

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amir S. Ali

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge