Eva Richard
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eva Richard.
Human Mutation | 1999
Magdalena Ugarte; Celia Pérez-Cerdá; Pilar Rodríguez-Pombo; Lourdes R. Desviat; Belén Pérez; Eva Richard; Silvia Muro; Eric Campeau; Toshihiro Ohura; Roy A. Gravel
Propionic acidemia is an inborn error of metabolism caused by a deficiency of propionyl‐CoA carboxylase, a heteropolymeric mitochondrial enzyme involved in the catabolism of branched chain amino acids, odd‐numbered chain length fatty acids, cholesterol, and other metabolites. The enzyme is composed of α and β subunits which are encoded by the PCCA and PCCB genes, respectively. Mutations in both genes can cause propionic acidemia. The identification of the responsible gene, previous to mutation analysis, can be performed by complementation assay or, in some instances, can be deduced from peculiarities relevant to either gene, including obtaining normal enzyme activity in the parents of many patients with PCCB mutations, observing combined absence of α and β subunits by Western blot of many PCCA patients, as well as conventional mRNA‐minus result of Northern blots for either gene or β subunit deficiency in PCCB patients. Mutations in both the PCCA and PCCB genes have been identified by sequencing either RT‐PCR products or amplified exonic fragments, the latter specifically for the PCCB gene for which the genomic structure is available. To date, 24 mutations in the PCCA gene and 29 in the PCCB gene have been reported, most of them single base substitutions causing amino acid replacements and a variety of splicing defects. A greater heterogeneity is observed in the PCCA gene—no mutation is predominant in the populations studied—while for the PCCB gene, a limited number of mutations is responsible for the majority of the alleles characterized in both Caucasian and Oriental populations. These two populations show a different spectrum of mutations, only sharing some involving CpG dinucleotides, probably as recurrent mutational events. Future analysis of the mutations identified, of their functional effect and their clinical relevance, will reveal potential genotype–phenotype correlations for this clinically heterogeneous disorder. Hum Mutat 14:275–282, 1999.
Human Mutation | 2009
Eva Richard; Ana Jorge-Finnigan; Judit García-Villoria; Begoña Merinero; Lourdes R. Desviat; Laura Gort; Paz Briones; Fátima Leal; Celia Pérez-Cerdá; Antonia Ribes; Magdalena Ugarte; Belén Pérez
Methylmalonic aciduria (MMA) cobalamin deficiency type C (cblC) with homocystinuria (MMACHC) is the most frequent genetic disorder of vitamin B12 metabolism. The aim of this work was to identify the mutational spectrum in a cohort of cblC‐affected patients and the analysis of the cellular oxidative stress and apoptosis processes, in the presence or absence of vitamin B12. The mutational spectrum includes nine previously described mutations: c.3G>A (p.M1L), c.217C>T (p.R73X), c.271dupA (p.R91KfsX14), c.331C>T (p.R111X), c.394C>T (p.R132X), c.457C>T (p.R153X), c.481C>T (p.R161X), c.565C>A (p.R189S), and c.615C>G (p.Y205X), and two novel changes, c.90G>A (p.W30X) and c.81+2T>G (IVS1+2T>G). The most frequent change was the known c.271dupA mutation, which accounts for 85% of the mutant alleles characterized in this cohort of patients. Owing to its high frequency, a real‐time PCR and subsequent high‐resolution melting (HRM) analysis for this mutation has been established for diagnostic purposes. All cell lines studied presented a significant increase of intracellular reactive oxygen species (ROS) content, and also a high rate of apoptosis, suggesting that elevated ROS levels might induce apoptosis in cblC patients. In addition, ROS levels decreased in hydroxocobalamin‐incubated cells, indicating that cobalamin might either directly or indirectly act as a scavenger of ROS. ROS production might be considered as a phenotypic modifier in cblC patients, and cobalamin supplementation or additional antioxidant drugs might suppress apoptosis and prevent cellular damage in these patients. Hum Mutat 30:1–9, 2009.
American Journal of Human Genetics | 1998
Pilar Rodríguez-Pombo; Janet Hoenicka; Silvia Muro; Belén Pérez; Celia Pérez-Cerdá; Eva Richard; Lourdes R. Desviat; Magdalena Ugarte
Propionyl-CoA carboxylase (PCC) is a mitochondrial biotin-dependent enzyme composed of an equal number of alpha and beta subunits. Mutations in the PCCA (alpha subunit) or PCCB (beta subunit) gene can cause the inherited metabolic disease propionic acidemia (PA), which can be life threatening in the neonatal period. Lack of data on the genomic structure of PCCB has been a significant impediment to full characterization of PCCB mutant chromosomes. In this study, we describe the genomic organization of the coding sequence of the human PCCB gene and the characterization of mutations causing PA in a total of 29 unrelated patients-21 from Spain and 8 from Latin America. The implementation of long-distance PCR has allowed us to amplify the regions encompassing the exon/intron boundaries and all the exons. The gene consists of 15 exons of 57-183 bp in size. All splice sites are consistent with the gt/ag rule. The availability of the intron sequences flanking each exon has provided the basis for implementation of screening for mutations in the PCCB gene. A total of 56/58 mutant chromosomes studied have been defined, with a total of 16 different mutations detected. The mutation spectrum includes one insertion/deletion, two insertions, 10 missense mutations, one nonsense mutation, and two splicing defects. Thirteen of these mutations correspond to those not described yet in other populations. The mutation profile found in the chromosomes from the Latin American patients basically resembles that of the Spanish patients.
The Journal of Pathology | 2007
Eva Richard; A Alvarez-Barrientos; Belén Pérez; Lourdes R. Desviat; Magdalena Ugarte
Methylmalonic acidaemia (MMA) is a heterogeneous group of rare genetic metabolic disorders caused by defects related to intracellular cobalamin (vitamin B12) metabolism. Increasing evidence has emerged suggesting that free radical generation is involved in the pathophysiology of neurodegenerative diseases, including some inborn errors of metabolism. We have previously identified in MMA patients several differentially expressed proteins involved in oxidative stress [mitochondrial superoxide dismutase (MnSOD) and mitochondrial glycerophosphate dehydrogenase (mGPDH)] and apoptosis by a proteomic approach. We have now extensively evaluated various parameters related to oxidative stress and apoptosis in cultured fibroblasts from a spectrum of patients with methylmalonic acidaemia. Fibroblasts from several MMA patients showed a significant increase in intracellular reactive oxygen species (ROS) content and in MnSOD expression level with respect to controls, suggesting a cellular response to intrinsic ROS stress. Moreover, we have demonstrated, using siRNA, that mGPDH is an important ROS generator in MMA patients. Cells from patients with MMA had a higher rate of apoptosis than those of controls and there was evidence that this process primarily involves the mitochondrial/caspase‐dependent pathway. ROS level–phenotype correlation revealed that patients with severe neonatal cblB disorder had elevated intracellular ROS content. These findings support the possible role of oxidative stress in the pathophysiology of methylmalonic acidaemia. Copyright
Human Mutation | 2009
Belén Pérez; Ana Rincón; Ana Jorge-Finnigan; Eva Richard; Begoña Merinero; Magdalena Ugarte; Lourdes R. Desviat
Development of pseudoexon exclusion therapies by antisense modification of pre‐mRNA splicing represents a type of personalized genetic medicine. Here we present the cellular antisense therapy and the cell‐based splicing assays to investigate the effect of two novel deep intronic changes c.1957–898A>G and c.1957–920C>A identified in the methylmalonyl–coenzyme A (CoA) mutase (MUT) gene. The results show that the nucleotide change c.1957–898A>G is a pathological mutation activating pseudoexon insertion and that antisense morpholino oligonucleotide (AMO) treatment in patient fibroblasts leads to recovery of MUT activity to levels 25 to 100% of control range. On the contrary, the change c.1957–920C>A, identified in two fibroblasts cell lines in cis with c.1885A>G (p.R629G) or c.458T>A (p.D153V), appears to be a rare variant of uncertain clinical significance. The functional analysis of c.1885A>G and c.458T>A indicate that they are the disease‐causing mutations in these two patients. The results presented here highlight the necessity of scanning the described intronic region for mutations in MUT‐affected patients, followed by functional analyses to demonstrate the pathogenicity of the identified changes, and extend previous work of the applicability of the antisense approach in methylmalonic aciduria (MMAuria) for a novel intronic mutation. Hum Mutat 30:1–7, 2009.
Human Genetics | 1997
Eva Richard; Lourdes R. Desviat; Belén Pérez; Celia Pérez-Cerdá; Magdalena Ugarte
Abstract Propionyl-CoA carboxylase (PCC) is a mitochondrial, biotin-dependent enzyme involved in the catabolism of branched chain amino acids, odd chain fatty acids, and other metabolites. PCC consists of non-identical subunits, α and β, encoded by the PCCA and PCCB genes, respectively. Inherited deficiency of PCC due to mutations in either the PCCA or the PCCB gene results in propionic acidemia (PA), a clinically heterogeneous disorder with a severe, often lethal, neonatal form, and a mild, later onset form. To characterize PCCA gene mutations responsible for PCC deficiency, we analyzed RT-PCR products obtained from cultured fibroblasts from Spanish PCC-α deficient patients. In three patients, smaller than normal PCR products were observed, and sequence analysis revealed the deletion of a 54-bp exon in the cDNA. Sequencing of genomic DNA from these three patients led to the identification of three novel mutations in the PCCA gene, two short deletions and one small insertion, adjacent to short direct repeats, and all of them affecting the consensus splice sites of the skipped exon. These mutations, 1771IVS-2del9, 1824IVS+3del4, and 1824IVS+3insCT, are the cause of the aberrant splicing of the PCCA pre-mRNA and result in an in-frame deletion of 54 nucleotides in the cDNA, probably leading to an unstable protein structure which is responsible for the lack of activity leading to PCC deficiency in these patients.
Biochimica et Biophysica Acta | 1999
Eva Richard; Lourdes R. Desviat; Belén Pérez; Celia Pérez-Cerdá; Magdalena Ugarte
The inherited metabolic disease propionic acidemia (PA) can result from mutations in either of the genes PCCA or PCCB, which encode the alpha and beta subunits, respectively, of the mitochondrial enzyme propionyl CoA-carboxylase. In this work we have analyzed the molecular basis of PCCA gene defects, studying mRNA levels and identifying putative disease causing mutations. A total of 10 different mutations, none predominant, are present in a sample of 24 mutant alleles studied. Five novel mutations are reported here for the first time. A neutral polymorphism and a variant allele present in the general population were also detected. To examine the effect of a point mutation (M348K) involving a highly conserved residue, we have carried out in vitro expression of normal and mutant PCCA cDNA and analyzed the mitochondrial import and stability of the resulting proteins. Both wild-type and mutant proteins were imported into mitochondria and processed into the mature form with similar efficiency, but the mature mutant M348K protein decayed more rapidly than did the wild-type, indicating a reduced stability, which is probably the disease-causing mechanism.
Human Mutation | 2011
Patricia Alcaide; Begoña Merinero; Pedro Ruiz-Sala; Eva Richard; Rosa Navarrete; Angela Arias; Antonia Ribes; Rafael Artuch; Jaume Campistol; Magdalena Ugarte; Pilar Rodríguez-Pombo
This work examined nine patients with creatine deficiency syndrome (CDS): six with a creatine transport (CRTR) defect and three with a GAMT defect. Eleven nucleotide variations were detected: six in SLC6A8 and five in GAMT. These changes were analyzed at the mRNA level and specific alleles (most of which bore premature stop codons) were selected as nulls because they provoked nonsense‐mediated decay activation. The impact of these CDS mutations on metabolic stress (ROS production, p38MAPK activation, aberrant proliferation and apoptosis) was analyzed in patient fibroblast cultures. Oxidative stress contributed toward the severe form of CDS, with increases seen in the intracellular ROS content and the percentage of apoptotic cells. An altered cell cycle was also seen in a number of CRTR and GAMT fibroblast cell lines (mostly those carrying null alleles). p38MAPK activation only correlated with oxidative stress in the CRTR cells. Based on intracellular creatine levels, the contribution of energy depletion toward metabolic stress was demonstrable only in selected CRTR cells. Together, these findings suggest that the apoptotic response to genotoxic damage in the present CDS cells may have been triggered by different cell signaling pathways. They also suggest that reducing oxidative stress could be helpful in treating CDS. Hum Mutat 32:1–10, 2011.
Journal of Cellular Biochemistry | 2013
Eva Richard; Lourdes R. Desviat; Magdalena Ugarte; Belén Pérez
Oxidative stress has been described as a putative disease mechanism in pathologies associated with an elevation of homocysteine. An increased reactive oxygen species (ROS) production and apoptosis rate have been associated with several disorders of cobalamin metabolism, particularly with methylmalonic aciduria (MMA) combined with homocystinuria cblC type. In this work, we have evaluated several parameters related to oxidative stress and apoptosis in fibroblasts from patients with homocystinuria due to defects in the MTR, MTRR, and MTHFR genes involved in the remethylation pathway of homocysteine. We have also evaluated these processes by knocking down the MTRR gene in cellular models, and complementation by transducing the wild‐type gene in cblE mutant fibroblasts. All cell lines showed a significant increase in ROS content and in MnSOD expression level, and also a higher rate of apoptosis with similar levels to the ones in cblC fibroblasts. The amount of the active phosphorylated forms of p38 and JNK stress‐kinases was also increased. ROS content and apoptosis rate increased in control fibroblasts and in a glioblastoma cell line by shRNA‐mediated silencing of MTRR gene expression. In contrast, wild‐type MTRR gene corrected mutant cell lines showed a decrease in ROS and apoptosis levels. To the best of our knowledge, this study provides the first evidence that an impaired remethylation capacity due to low MTRR and MTR activity might be partially responsible for stress response. J. Cell. Biochem. 114: 183–191, 2012.
Journal of Inherited Metabolic Disease | 2013
Lorena Gallego-Villar; Celia Pérez-Cerdá; Belén Pérez; David Abia; Magdalena Ugarte; Eva Richard; Lourdes R. Desviat
Propionic acidemia (PA), caused by a deficiency of the mitochondrial biotin dependent enzyme propionyl-CoA carboxylase (PCC) is one of the most frequent organic acidurias in humans. PA is caused by mutations in either the PCCA or PCCB genes encoding the α- and β-subunits of the PCC enzyme which are assembled as an α6β6 dodecamer. In this study we have investigated the molecular basis of the defect in ten fibroblast samples from PA patients. Using homology modeling with the recently solved crystal structure of the PCC holoenzyme and a eukaryotic expression system we have analyzed the structural and functional effect of novel point mutations, also revealing a novel splice defect by minigene analysis. In addition, we have investigated the contribution of oxidative stress to cellular damage measuring reactive oxygen species (ROS) levels and apoptosis parameters in patient fibroblasts, as recent studies point to a secondary mitochondrial dysfunction as pathophysiological mechanism in this disorder. The results show an increase in intracellular ROS content compared to controls, correlating with the activation of the JNK and p38 signaling pathways. Highest ROS levels were present in cells harboring functionally null mutations, including one severe missense mutation. This work provides molecular insight into the pathogenicity of PA variants and indicates that oxidative stress may be a major contributing factor to the cellular damage, supporting the proposal of antioxidant strategies as novel supplementary therapy in this rare disease.