Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Rieser is active.

Publication


Featured researches published by Eva Rieser.


Nature | 2011

Linear ubiquitination prevents inflammation and regulates immune signalling

Björn Gerlach; Stefanie M. Cordier; Anna C. Schmukle; Christoph H. Emmerich; Eva Rieser; Tobias Haas; Andrew I. Webb; James A Rickard; Holly Anderton; W. Wei-Lynn Wong; Ueli Nachbur; Lahiru Gangoda; Uwe Warnken; Anthony W. Purcell; John Silke; Henning Walczak

Members of the tumour necrosis factor (TNF) receptor superfamily have important functions in immunity and inflammation. Recently linear ubiquitin chains assembled by a complex containing HOIL-1 and HOIP (also known as RBCK1 and RNF31, respectively) were implicated in TNF signalling, yet their relevance in vivo remained uncertain. Here we identify SHARPIN as a third component of the linear ubiquitin chain assembly complex, recruited to the CD40 and TNF receptor signalling complexes together with its other constituents, HOIL-1 and HOIP. Mass spectrometry of TNF signalling complexes revealed RIP1 (also known as RIPK1) and NEMO (also known as IKKγ or IKBKG) to be linearly ubiquitinated. Mutation of the Sharpin gene (Sharpincpdm/cpdm) causes chronic proliferative dermatitis (cpdm) characterized by inflammatory skin lesions and defective lymphoid organogenesis. Gene induction by TNF, CD40 ligand and interleukin-1β was attenuated in cpdm-derived cells which were rendered sensitive to TNF-induced death. Importantly, Tnf gene deficiency prevented skin lesions in cpdm mice. We conclude that by enabling linear ubiquitination in the TNF receptor signalling complex, SHARPIN interferes with TNF-induced cell death and, thereby, prevents inflammation. Our results provide evidence for the relevance of linear ubiquitination in vivo in preventing inflammation and regulating immune signalling.


Molecular Cell | 2009

Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction.

Tobias Haas; Christoph H. Emmerich; Björn Gerlach; Anna C. Schmukle; Stefanie M. Cordier; Eva Rieser; Rebecca Feltham; James E. Vince; Uwe Warnken; Till Wenger; Ronald Koschny; David Komander; John Silke; Henning Walczak

TNF is a key inflammatory cytokine. Using a modified tandem affinity purification approach, we identified HOIL-1 and HOIP as functional components of the native TNF-R1 signaling complex (TNF-RSC). Together, they were shown to form a linear ubiquitin chain assembly complex (LUBAC) and to ubiquitylate NEMO. We show that LUBAC binds to ubiquitin chains of different linkage types and that its recruitment to the TNF-RSC is impaired in TRADD-, TRAF2-, and cIAP1/2- but not in RIP1- or NEMO-deficient MEFs. Furthermore, the E3 ligase activity of cIAPs, but not TRAF2, is required for HOIL-1 recruitment to the TNF-RSC. LUBAC enhances NEMO interaction with the TNF-RSC, stabilizes this protein complex, and is required for efficient TNF-induced activation of NF-kappaB and JNK, resulting in apoptosis inhibition. Finally, we demonstrate that sustained stability of the TNF-RSC requires LUBACs enzymatic activity, thereby adding a third form of ubiquitin linkage to the triggering of TNF signaling by the TNF-RSC.


Molecular Cell | 2012

The Ubiquitin Ligase XIAP Recruits LUBAC for NOD2 Signaling in Inflammation and Innate Immunity

Rune Busk Damgaard; Ueli Nachbur; Monica Yabal; W. Wei-Lynn Wong; Berthe Katrine Fiil; Mischa Kastirr; Eva Rieser; James A Rickard; Aleksandra Bankovacki; Christian Peschel; Juergen Ruland; Simon Bekker-Jensen; Niels Mailand; Thomas Kaufmann; Andreas Strasser; Henning Walczak; John Silke; Philipp J. Jost; Mads Gyrd-Hansen

Nucleotide-binding and oligomerization domain (NOD)-like receptors constitute a first line of defense against invading bacteria. X-linked Inhibitor of Apoptosis (XIAP) is implicated in the control of bacterial infections, and mutations in XIAP are causally linked to immunodeficiency in X-linked lymphoproliferative syndrome type-2 (XLP-2). Here, we demonstrate that the RING domain of XIAP is essential for NOD2 signaling and that XIAP contributes to exacerbation of inflammation-induced hepatitis in experimental mice. We find that XIAP ubiquitylates RIPK2 and recruits the linear ubiquitin chain assembly complex (LUBAC) to NOD2. We further show that LUBAC activity is required for efficient NF-κB activation and secretion of proinflammatory cytokines after NOD2 stimulation. Remarkably, XLP-2-derived XIAP variants have impaired ubiquitin ligase activity, fail to ubiquitylate RIPK2, and cannot facilitate NOD2 signaling. We conclude that XIAP and LUBAC constitute essential ubiquitin ligases in NOD2-mediated inflammatory signaling and propose that deregulation of NOD2 signaling contributes to XLP-2 pathogenesis.


Trends in Biochemical Sciences | 2013

Linear ubiquitination: a newly discovered regulator of cell signalling

Eva Rieser; Stefanie M. Cordier; Henning Walczak

Ubiquitination is a post-translational modification that creates versatility in cell signalling, in part because eight biochemically different inter-ubiquitin linkages can be formed through the seven internal lysine residues of ubiquitin or its amino-terminal methionine. The latter, referred to as linear or M1 linkage, is created by the linear ubiquitin chain assembly complex (LUBAC). Previously, K63 linkages were thought to be exclusively responsible for ubiquitin-mediated nondegradative functions. It now emerges, however, that M1 ubiquitination is crucial in various pathways, and that generation of a physiological signalling output requires cooperation between different ubiquitin linkage types. Here, we review the currently known functions of LUBAC and M1 ubiquitination, discuss promising future research directions into their functions, and how this may reveal novel therapeutic opportunities for diseases with perturbed linear ubiquitination.


Cell Reports | 2015

LUBAC-Recruited CYLD and A20 Regulate Gene Activation and Cell Death by Exerting Opposing Effects on Linear Ubiquitin in Signaling Complexes

Peter Draber; Sebastian Kupka; Matthias Reichert; Helena Draberova; Elodie Lafont; Diego De Miguel; Lisanne Spilgies; Silvia Surinova; Lucia Taraborrelli; Torsten Hartwig; Eva Rieser; Luigi Martino; Katrin Rittinger; Henning Walczak

Summary Ubiquitination and deubiquitination are crucial for assembly and disassembly of signaling complexes. LUBAC-generated linear (M1) ubiquitin is important for signaling via various immune receptors. We show here that the deubiquitinases CYLD and A20, but not OTULIN, are recruited to the TNFR1- and NOD2-associated signaling complexes (TNF-RSC and NOD2-SC), at which they cooperate to limit gene activation. Whereas CYLD recruitment depends on its interaction with LUBAC, but not on LUBAC’s M1-chain-forming capacity, A20 recruitment requires this activity. Intriguingly, CYLD and A20 exert opposing effects on M1 chain stability in the TNF-RSC and NOD2-SC. While CYLD cleaves M1 chains, and thereby sensitizes cells to TNF-induced death, A20 binding to them prevents their removal and, consequently, inhibits cell death. Thus, CYLD and A20 cooperatively restrict gene activation and regulate cell death via their respective activities on M1 chains. Hence, the interplay between LUBAC, M1-ubiquitin, CYLD, and A20 is central for physiological signaling through innate immune receptors.


Cell Reports | 2014

HOIP Deficiency Causes Embryonic Lethality by Aberrant TNFR1-Mediated Endothelial Cell Death

Nieves Peltzer; Eva Rieser; Lucia Taraborrelli; Peter Draber; Maurice Darding; Barbara Pernaute; Yutaka Shimizu; Aida Sarr; Helena Draberova; Antonella Montinaro; Juan Pedro Martinez-Barbera; John Silke; Tristan A. Rodriguez; Henning Walczak

Linear ubiquitination is crucial for innate and adaptive immunity. The linear ubiquitin chain assembly complex (LUBAC), consisting of HOIL-1, HOIP, and SHARPIN, is the only known ubiquitin ligase that generates linear ubiquitin linkages. HOIP is the catalytically active LUBAC component. Here, we show that both constitutive and Tie2-Cre-driven HOIP deletion lead to aberrant endothelial cell death, resulting in defective vascularization and embryonic lethality at midgestation. Ablation of tumor necrosis factor receptor 1 (TNFR1) prevents cell death, vascularization defects, and death at midgestation. HOIP-deficient cells are more sensitive to death induction by both tumor necrosis factor (TNF) and lymphotoxin-α (LT-α), and aberrant complex-II formation is responsible for sensitization to TNFR1-mediated cell death in the absence of HOIP. Finally, we show that HOIPs catalytic activity is necessary for preventing TNF-induced cell death. Hence, LUBAC and its linear-ubiquitin-forming activity are required for maintaining vascular integrity during embryogenesis by preventing TNFR1-mediated endothelial cell death.


Journal of Experimental Medicine | 2016

LUBAC deficiency perturbs TLR3 signaling to cause immunodeficiency and autoinflammation

Julia Zinngrebe; Eva Rieser; Lucia Taraborrelli; Nieves Peltzer; Torsten Hartwig; Hongwei Ren; Ildiko Kovacs; Cornelia Endres; Peter Draber; Maurice Darding; Silvia von Karstedt; Johannes Lemke; Balazs Dome; Michael Bergmann; Brian J. Ferguson; Henning Walczak

LUBAC components interact with the TLR3 signaling cascade at different levels, thereby tightly controlling TLR3-mediated innate immunity.


Nature Communications | 2016

Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis

Charis E. Teh; Najoua Lalaoui; Reema Jain; Antonia Policheni; M Heinlein; Silvia Alvarez-Diaz; Julie Sheridan; Eva Rieser; Deuser S; Maurice Darding; Hui-Fern Koay; Yifang Hu; Fiona Kupresanin; Lorraine A. O'Reilly; Dale I. Godfrey; Gordon K. Smyth; Andreas Strasser; Henning Walczak; John Silke; Daniel Gray

The linear ubiquitin chain assembly complex (LUBAC) is essential for innate immunity in mice and humans, yet its role in adaptive immunity is unclear. Here we show that the LUBAC components HOIP, HOIL-1 and SHARPIN have essential roles in late thymocyte differentiation, FOXP3+ regulatory T (Treg)-cell development and Treg cell homeostasis. LUBAC activity is not required to prevent TNF-induced apoptosis or necroptosis but is necessary for the transcriptional programme of the penultimate stage of thymocyte differentiation. Treg cell-specific ablation of HOIP causes severe Treg cell deficiency and lethal immune pathology, revealing an ongoing requirement of LUBAC activity for Treg cell homeostasis. These data reveal stage-specific requirements for LUBAC in coordinating the signals required for T-cell differentiation.


Advances in Experimental Medicine and Biology | 2011

The Linear Ubiquitin Chain Assembly Complex (LUBAC) Forms Part of the TNF-R1 Signalling Complex and Is Required for Effective TNF-Induced Gene Induction and Prevents TNF-Induced Apoptosis

Christoph H. Emmerich; Anna C. Schmukle; Tobias Haas; Björn Gerlach; Stefanie M. Cordier; Eva Rieser; Henning Walczak

For antigen and various cytokine receptor-mediated signalling events, ubiquitination is a fundamental regulatory mechanism implicated in the different signalling pathways emanating from these receptors. Since the discovery of the importance of lysine 48-linked ubiquitin chains for NF-?B activation and the finding that the ubiquitin ligases TRAF2 and cIAP1/2 are recruited to the TNF-RSC, it became clear that the activation of TNF-induced signalling pathways depends strongly on the ubiquitin system. TNF plays a critical role in inflammatory processes and is involved in the regulation of immune responses. Depending on the cellular context, TNF initiates a complex cascade of signalling events that can result in induction of proinflammatory cytokines, cell proliferation, differentiation or cell death. Ligand-induced trimerisation of TNF-R1 leads to the formation of a multi-protein complex, the TNFR1 signalling complex (TNF-RSC). To be able to understand the multifaceted regulatory functions of the ubiquitin network and to comprehend the complex interplay of signalling pathways emanating from TNF-R1, the TNF-RSC and its composition need to be understood at the molecular level. Therefore we newly developed a modified tandem affinity purification (moTAP) procedure which allowed us to physically determine the molecular composition of the TNF-RSC in an unbiased manner. Using the moTAP approach, HOIL-1 and HOIP were identified as two novel, functional components of the native TNF-RSC. Together they were shown to form a linear ubiquitin chain assembly complex (LUBAC), catalysing the formation of linear head-to-tail ubiquitin chains. LUBAC mediates ubiquitination of NEMO with linear ubiquitin chains, required for efficient NF-?B activation following TNF stimulation. We show that the stimulation-dependent recruitment of LUBAC to the TNF-RSC is impaired in TRADD-, TRAF2-, and cIAP1/2-, but not in RIP1- and NEMO-deficient mouse embryonic fibroblast (MEF) cell lines. Furthermore, we demonstrate that the E3 ligase activity of cIAPs, but not of TRAF2, is required for HOIL-1 recruitment to the TNF-RSC. This result, together with the ability of HOIL-1 and HOIP to bind polyubiquitin chains of various linkage types, suggests that LUBAC is recruited to the TNF-RSC via cIAP-generated ubiquitin chains. LUBAC enhances NEMO interaction with the TNF-RSC, stabilises this protein complex, and is required for efficient TNF-induced activation of NF-?B and JNK, resulting in apoptosis inhibition. Finally, we show that the activity of LUBAC is required for stabilisation of the TNF-RSC, thereby adding a third form of ubiquitin linkage to the control of TNF signalling. The identification of HOIL-1 and HOIP as functional constituents of the TNF-RSC provides evidence that LUBAC is an important regulator at the apex of TNF-induced signalling cascades and increases the combinatorial complexity of ubiquitin modifications within this receptor complex.


Nature Communications | 2018

LUBAC prevents lethal dermatitis by inhibiting cell death induced by TNF, TRAIL and CD95L

Lucia Taraborrelli; Nieves Peltzer; Antonella Montinaro; Sebastian Kupka; Eva Rieser; Torsten Hartwig; Aida Sarr; Maurice Darding; Peter Draber; Tobias L. Haas; Ayse U. Akarca; Teresa Marafioti; Manolis Pasparakis; John Bertin; Peter J. Gough; Andreas Strasser; Martin Leverkus; John Silke; Henning Walczak

The linear ubiquitin chain assembly complex (LUBAC), composed of HOIP, HOIL-1 and SHARPIN, is required for optimal TNF-mediated gene activation and to prevent cell death induced by TNF. Here, we demonstrate that keratinocyte-specific deletion of HOIP or HOIL-1 (E-KO) results in severe dermatitis causing postnatal lethality. We provide genetic and pharmacological evidence that the postnatal lethal dermatitis in HoipE-KO and Hoil-1E-KO mice is caused by TNFR1-induced, caspase-8-mediated apoptosis that occurs independently of the kinase activity of RIPK1. In the absence of TNFR1, however, dermatitis develops in adulthood, triggered by RIPK1-kinase-activity-dependent apoptosis and necroptosis. Strikingly, TRAIL or CD95L can redundantly induce this disease-causing cell death, as combined loss of their respective receptors is required to prevent TNFR1-independent dermatitis. These findings may have implications for the treatment of patients with mutations that perturb linear ubiquitination and potentially also for patients with inflammation-associated disorders that are refractory to inhibition of TNF alone.TNF mediated inflammation is critical in autoimmune mediated pathology, however many patients are refractory to current anti-TNF therapeutics. Here the authors show induction of several death ligands, in addition to TNF is sufficient to cause fatal dermatitis in a LUBAC deficient murine model of disease.

Collaboration


Dive into the Eva Rieser's collaboration.

Top Co-Authors

Avatar

Henning Walczak

University College London

View shared research outputs
Top Co-Authors

Avatar

John Silke

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurice Darding

University College London

View shared research outputs
Top Co-Authors

Avatar

Peter Draber

University College London

View shared research outputs
Top Co-Authors

Avatar

Andreas Strasser

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nieves Peltzer

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Torsten Hartwig

University College London

View shared research outputs
Top Co-Authors

Avatar

James A Rickard

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge