Eva Rothäusler
University of Turku
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eva Rothäusler.
Journal of Phycology | 2009
Eva Rothäusler; Iván Gómez; Iván A. Hinojosa; Ulf Karsten; Fadia Tala; Martin Thiel
Macroalgal rafts frequently occur floating in coastal waters of temperate regions of the world’s oceans. These rafts are considered important dispersal vehicles for associated organisms with direct development. However, environmental factors may limit the floating potential of kelp and thereby the dispersal of associated organisms. To examine the effect of water temperature and grazing on growth, reproductive output, and survival of floating Macrocystis spp., experiments were conducted in outdoor tanks during austral summer 2006/2007 at three sites along the Chilean Pacific coast (20° S, 30° S, 40° S). At each site, Macrocystis spp. was maintained individually at three different water temperatures (ambient, ambient − 4°C, ambient + 4°C) and in the presence or absence of the amphipod grazer Peramphithoe femorata for 14 d. High water temperatures (>20°C) provoked rapid degradation of Macrocystis spp. rafts. At moderate temperatures (15°C–20°C), algal survival depended on the presence of associated grazers. In the absence of grazers, algal rafts gained in biomass while grazing caused considerable losses of algal biomass. Algal survival was the highest under cooler conditions (<15°C), where raft degradation was slow and grazer‐induced biomass losses were compensated by continuing algal growth. Our results indicate that floating kelp rafts can survive for long time periods at the sea surface, but survival depends on the interaction between temperature and grazing. We suggest that these processes limiting the survival of kelp rafts in warmer temperatures may act as a dispersal barrier for kelp and its associated passengers.
Journal of Phycology | 2011
Eva Rothäusler; Iván Gómez; Iván A. Hinojosa; Ulf Karsten; Fadia Tala; Martin Thiel
Rafts of Macrocystis pyrifera (L.) C. Agardh can act as an important dispersal vehicle for a multitude of organisms, but this mechanism requires prolonged persistence of floating kelps at the sea surface. When detached, kelps become transferred into higher temperature and irradiance regimes at the sea surface, which may negatively affect kelp physiology and thus their ability to persist for long periods after detachment. To examine the effect of water temperature and herbivory on the photosynthetic performance, pigment composition, carbonic anhydrase (CA) activity, and the nitrogen (N) and carbon (C) content of floating M. pyrifera, experiments were conducted at three sites (20° S, 30° S, 40° S) along the Chilean Pacific coast. Sporophytes of M. pyrifera were maintained at three different temperatures (ambient, ambient − 4°C, ambient + 4°C) and in presence or absence of the amphipod Peramphithoe femorata for 14 d. CA activity decreased at 20° S and 30° S, where water temperatures and irradiances were highest. At both sites, pigment contents were substantially lower in the experimental algae than in the initial algae, an effect that was enhanced by grazers. Floating kelps at 20° S could not withstand water temperatures >24°C and sank at day 5 of experimentation. Maximal quantum yield decreased at 20° S and 30° S but remained high at 40° S. It is concluded that environmental stress is low for kelps floating under moderate temperature and irradiance conditions (i.e., at 40° S), ensuring their physiological integrity at the sea surface and, consequently, a high dispersal potential for associated biota.
PLOS ONE | 2013
Karine Gagnon; Eva Rothäusler; Anneli Syrjänen; Maria Yli-Renko; Veijo Jormalainen
Nutrient enrichment in coastal marine systems can have profound impacts on trophic networks. In the Baltic Sea, the population of Great Cormorant (Phalacrocorax carbo sinensis) has increased nearly exponentially since the mid-1990s, and colonies of these seabirds can be important sources of nitrogen enrichment for nearby benthic communities due to guano runoff. In this study we used stable isotope analyses and diet mixing models to determine the extent of nitrogen enrichment from cormorant colonies, as well as to examine any possible changes in herbivore diet preferences due to enrichment. We found significantly higher levels of δ15N in samples from colony islands than control islands for producers (the dominant macroalga Fucus vesiculosus, filamentous algae, and periphyton) and herbivores, as well as a positive correlation between enrichment and nest density in colony sites. We also found that enrichment increased over the breeding season of the cormorants, with higher enrichment in late summer than early summer. While the amount of total nitrogen did not differ between colony and control sites, the amount of guano-based nitrogen in algae was >50% in most sites, indicating high nitrogen enrichment from colonies. Herbivores (the isopod Idotea balthica and the gastropod Theodoxus fluviatilis) preferred feeding upon the dominant macroalga Fucus vesiculosus rather than on filamentous algae or periphyton in both control and colony, and there was a significant increase in periphyton consumption near colony sites. Overall, guano from cormorant colonies seems to have effects on both producers and herbivores, as well as the potential to modify algae-herbivore interactions.
Journal of Applied Phycology | 2006
Eva Rothäusler; Martin Thiel
Many species of macroalgae survive after becoming dislodged from their primary substratum, but little is known about their capacity to express anti-herbivore defences after detachment. We examined the effect of detachment on the relative palatability of the two kelp species Lessonia nigrescens and Macrocystis integrifolia to mesograzers. Laboratory and field experiments were conducted on the northern-central coast of Chile to investigate whether (i) time after detachment and (ii) grazing on detached and attached algae could trigger internal defence mechanisms in the algae, which may have acted as deterrents to grazing. In order to examine palatability, feeding assays were run after each experiment using fresh algal pieces and artificial food. Time after detachment had a significant influence on palatability of L. nigrescens but not of M. integrifolia. During the first 12 days of detachment, detached L. nigrescens held in grazer-free laboratory tanks were not significantly more palatable than attached conspecifics from the field but thereafter detached individuals became more palatable. Floating individuals of M. integrifolia showed no effect of detachment, indicating that this alga maintains its defence after detachment. An experiment conducted in the field confirmed these results for M. integrifolia. An additional laboratory experiment confirmed that attachment status plays an important role on algal defence reaction for L. nigrescens when exposed to grazers. Detached and previously grazed individuals of this species were less palatable than grazer-free control algae, but grazing had no effect on palatability of attached algae. Our results indicate that kelps have varying capacities for development of anti-grazing responses once they become detached, possibly depending on their capacity to float and survive after detachment.
Revista Chilena de Historia Natural | 2005
Eva Rothäusler; Erasmo C. Macaya; Markus Molis; Martin Wahl; Martin Thiel
Macroalgae can defend themselves against generalist and specialist herbivores via morphological and/or chemical traits. Herein we examined the defensive responses (via relative palatability) of two brown (Lessonia nigrescens, Glossophora kunthii) and two red algae (Grateloupia doryphora, Chondracanthus chamissoi) from the northern-central coast of Chile against selected generalist meso-herbivores. Two laboratory experiments were conducted to investigate whether (i) algae can respond generally to grazing pressure of meso-herbivores (amphipods, isopods and juvenile sea urchins) and whether (ii) these algal responses were inducible. In order to examine palatability and thus effectiveness of responses, feeding assays were run after each experiment using fresh algal pieces and artificial agar-based food. Lessonia nigrescens responded to amphipods but not to sea urchins, and G. kunthii showed inducible response against one species of amphipods. Grateloupia doryphora did not respond against any of the tested grazers, whereas C. chamissoi responded against one species of amphipods and the tested isopod. Our results indicate variable responses of macroalgae against selected generalist meso-herbivores and evidence of an inducible defense in the brown alga G. kunthii.
Phycologia | 2017
Fadia Tala; Miguel Angel Penna-Díaz; Guillermo Luna-Jorquera; Eva Rothäusler; Martin Thiel
Abstract: Floating seaweeds are important dispersal vehicles, especially for organisms with limited movement capacities and for the seaweeds themselves. The persistence of floating seaweeds is determined by the balance between their acclimation potential and the environmental pressures at the sea surface. Solar radiation is the most important inducer of physiological stress, varying in intensity throughout the day and the year. Therefore photoinhibition and subsequent recovery can change depending on the daily radiation dose and season. The bull kelp Durvillaea antarctica is one of the most common floating seaweeds in the southern oceans, including New Zealand, Chile, and most subantarctic islands. Herein, daily cycles of maximum quantum yield (Fv/Fm), photoinhibition and recovery levels were examined in microcosm experiments with floating D. antarctica throughout the year, focusing on the blade side exposed to solar radiation (sunny vs shadow side). Also, the effect of simulated wave action (blade turnover) and ultraviolet radiation (UVR) on photoinhibition and recovery of Fv/Fm was evaluated. Significant differences in maximum quantum yield were observed between blade sides, with lowest values on the sun-exposed side, especially during noontime and spring/summer months. Phlorotannins and pigments were measured during seasons with the most intense solar radiation (late spring, early summer), when Fv/Fm values were lowest. Phlorotannin, but not pigment concentrations, differed between sunny (lower concentration) and shadow blade sides (higher concentration) and throughout the daily cycle. Both blade sides had similar photoinhibition and recovery levels when blades were constantly turned over. Absence of UVR favoured the recovery capacity of Fv/Fm in both blade sides, suggesting that the photorecovery potential of floating kelps depends on the environmental conditions that kelp rafts face at the sea surface (e.g. cloudy vs sunny days, intense seawater movement and splashing vs calm sea conditions). The results confirm that photobiological stress is more severe during summer and on continuously sun-exposed blade sides, thereby damaging the blades and suppressing the floating time of D. antarctica.
Journal of Phycology | 2016
Eva Rothäusler; Joakim Sjöroos; Katharina Heye; Veijo Jormalainen
Genetic diversity may play an analogous role to species diversity, as it can contribute to ecosystem function and stability, and provision of ecosystem services. In the Baltic Sea, perennial algal beds are often comprised of only Fucus vesiculosus and the amount of genetic variation in fitness‐related traits (i.e., the ability of the alga to photosynthesize or withstand stress) will thus determine the algas local persistence in a changing environment. To study genetic variation in the crucial traits behind persistence we grew replicate vegetative branches that came from the same genotype in common gardens. We quantified osmotic stress tolerance and recovery responses by exposing branches to desiccation, freezing, and hyposalinity regimens. Our results show that genetic variation among genotypes was apparent for some photosynthetic parameters (maximal electron transport rate, saturation irradiance for electron transport, nonphotochemical quenching) and growth. Algae tolerated freezing (1,440 min at −2.5°C) and hyposalinity (1,560 min at 2.5) well, but did not recover from desiccation (70 min at 12°C, causing ~94% water loss). Furthermore, we found very little if any evidence on genetic variation in tolerance to these stressors. Our results suggest that low salinity and cold winters in the northern marginal populations selected for hyposalinity and freezing tolerant genotypes, possibly eroding genetic variation in tolerance, but that tolerance to harsh desiccation has been lost, likely due to relaxed selection. The overall availability of genetic variation in fitness related traits might be supportive for F. vesiculosus during adaptation to gradual changes of its environment.
Marine Environmental Research | 2018
Eva Rothäusler; Luca Rugiu; Veijo Jormalainen
Intensifying environmental changes due to climate change affect marine species worldwide. Herein, we experimentally tested if the combination of forecasted warming and hyposalinity adversely affected growth, receptacle formation, and photosynthesis of three marginal populations of the brown alga Fucus from the northern Baltic Sea. Growth was not impaired by the projected consequences of climate change but genotypes varied in their responses, suggesting existence of genetic variation in phenotypic plasticity. Climate change further prevented receptacle formation, implying that Fucus fail to reproduce sexually. Photosynthesis was not affected by climate change but varied among populations. Our results show that Fucus populations photosynthesized, grew, and survived well under the projected climate change but their sexual reproduction ceased. This suggests that the marginal populations tested herein are resilient to future conditions but only if asexual reproduction enables them to proliferate.
Journal of Phycology | 2018
Luca Rugiu; Iita Manninen; Eva Rothäusler; Veijo Jormalainen
To predict the effects of climate change, we first need information on both the current tolerance ranges of species and their future adaptive potential. Adaptive responses may originate either in genetic variation or in phenotypic plasticity, but the relative importance of these factors is poorly understood. Here, we tested the tolerance of Fucus radicans to the combination of hyposalinity and warming projected by climate models for 2070–2099. We measured the growth and survival responses of thalli in both current and future conditions, focusing on variations in tolerance among and within different clonal lineages. Survival was 32% lower in future than in current conditions, but the weight and length of the thalli which survived was respectively 267% and 178% higher when exposed to future conditions. The relatively high tolerance to the future conditions suggests that F. radicans is likely to persist in its current distributional range, which is limited to the Gulf of Bothia and Estonian coast in the Baltic Sea. Furthermore, this species may be able to expand its distribution southward and replace its congener F. vesiculosus, which, in previous studies, has not tolerated the future conditions as well. In addition, we discovered variation in tolerance to future conditions within one of the clonal lineages, which have been hitherto presumed to lack adaptive variation. The discovery of intra‐clonal phenotypic plasticity means that this alga has the potential for adaptive responses to climate change, which may be the key to the future persistence of F. radicans in the Baltic Sea.
Journal of Phycology | 2018
Eva Rothäusler; Hannes Reinwald; Boris A. López; Fadia Tala; Martin Thiel
The persistence of floating seaweeds, which depends on abiotic conditions but also herbivory, had previously been mostly tested in outdoor mesocosm experiments. In order to investigate if the obtained mesocosm results of high seaweed persistence under natural environmental conditions and under grazing pressure can be extrapolated to field situations, we conducted in situ experiments. During two summers (2007 and 2008), Macrocystis pyrifera was tethered (for 14 d) to lines in the presence and absence of the amphipod Peramphithoe femorata at three sites (Iquique, Coquimbo, Calfuco). We hypothesized that grazing damage and seaweed persistence vary among sites due to different abiotic factors. By incubating the sporophytes in mesh bags, we were either able to isolate (grazing) or exclude (control) amphipods. To test for a mesh bag artifact, a set of sporophytes was incubated without mesh bags (natural). Mesh bags used to exclude herbivores influenced sporophyte growth and physiological performance. The chlorophyll a (Chl a) content depended largely on grazers and grazed sporophytes grew less than natural and control sporophytes within the two summers. A decrease in Chl a content was found for the sites with the highest prevailing irradiances and temperatures, suggesting an efficient acclimation to these sea surface conditions. Our field‐based results of sporophyte acclimation ability even under grazing pressure widely align with previous mesocosm results. We conclude that M. pyrifera and other temperate floating seaweeds can function as long‐distance dispersal vectors even with hitchhiking mesoherbivores.