Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Ryckeboer is active.

Publication


Featured researches published by Eva Ryckeboer.


IEEE Journal of Selected Topics in Quantum Electronics | 2014

Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range

Günther Roelkens; Utsav Dave; Alban Gassenq; Nannicha Hattasan; Chen Hu; Bart Kuyken; François Leo; Aditya Malik; Muhammad Muneeb; Eva Ryckeboer; Dorian Sanchez; Sarah Uvin; Ruijun Wang; Zeger Hens; Roel Baets; Yosuke Shimura; Federica Gencarelli; Benjamin Vincent; Roger Loo; Joris Van Campenhout; L. Cerutti; Jean-Baptiste Rodriguez; E. Tournié; Xia Chen; Milos Nedeljkovic; Goran Z. Mashanovich; Li Shen; Noel Healy; Anna C. Peacock; Xiaoping Liu

In this paper we discuss silicon-based photonic integrated circuit technology for applications beyond the telecommunication wavelength range. Silicon-on-insulator and germanium-on-silicon passive waveguide circuits are described, as well as the integration of III-V semiconductors, IV-VI colloidal nanoparticles and GeSn alloys on these circuits for increasing the functionality. The strong nonlinearity of silicon combined with the low nonlinear absorption in the mid-infrared is exploited to generate picosecond pulse based supercontinuum sources, optical parametric oscillators and wavelength translators connecting the telecommunication wavelength range and the mid-infrared.


Optics Express | 2013

Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 um

Muhammad Muneeb; Xia Chen; Peter Verheyen; Guy Lepage; Shibnath Pathak; Eva Ryckeboer; Aditya Malik; Bart Kuyken; Milos Nedeljkovic; J. Van Campenhout; Goran Z. Mashanovich; Günther Roelkens

The design and characterization of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm is reported. The devices are fabricated on 200 mm SOI wafers in a CMOS pilot line. Both arrayed waveguide grating structures and planar concave grating structures were designed and tested. Low insertion loss (1.5-2.5 dB) and good crosstalk characteristics (15-20 dB) are demonstrated, together with waveguide propagation losses in the range of 3 to 6 dB/cm.


Optical Materials Express | 2013

Silicon-based heterogeneous photonic integrated circuits for the mid-infrared

Günther Roelkens; Utsav Dave; Alban Gassenq; Nannicha Hattasan; Chen Hu; Bart Kuyken; François Leo; Aditya Malik; Muhammad Muneeb; Eva Ryckeboer; Sarah Uvin; Zeger Hens; Roel Baets; Yosuke Shimura; Federica Gencarelli; Benjamin Vincent; Roger Loo; Joris Van Campenhout; L. Cerutti; Jean Baptiste Rodriguez; E. Tournié; Xia Chen; Milos Nedeljkovic; Goran Z. Mashanovich; Li Shen; Noel Healy; Anna C. Peacock; Xiaoping Liu; Richard M. Osgood; W. M. J. Green

In this paper we present our recent work on mid-infrared photonic integrated circuits for spectroscopic sensing applications. We discuss the use of silicon-based photonic integrated circuits for this purpose and detail how a variety of optical functions in the mid-infrared besides passive waveguiding and filtering can be realized, either relying on nonlinear optics or on the integration of other materials such as GaSb-based compound semiconductors, GeSn epitaxy and PbS colloidal nanoparticles.


Optics Express | 2013

Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm

Eva Ryckeboer; Alban Gassenq; Muhammad Muneeb; Nannicha Hattasan; Shibnath Pathak; L. Cerutti; Jean-Baptiste Rodriguez; E. Tournié; Wim Bogaerts; Roel Baets; Günther Roelkens

We present a silicon-on-insulator (SOI) based spectrometer platform for a wide operational wavelength range. Both planar concave grating (PCG, also known as echelle grating) and arrayed waveguide grating (AWG) spectrometer designs are explored for operation in the short-wave infrared. In addition, a total of four planar concave gratings are designed to cover parts of the wavelength range from 1510 to 2300 nm. These passive wavelength demultiplexers are combined with GaInAsSb photodiodes. These photodiodes are heterogeneously integrated on SOI with benzocyclobutene (DVS-BCB) as an adhesive bonding layer. The uniformity of the photodiode characteristics and high processing yield, indicate a robust fabrication process. We demonstrate good performance of the miniature spectrometers over all operational wavelengths which paves the way to on-chip absorption spectroscopy in this wavelength range.


Photonics Research | 2015

Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited]

Ananth Subramanian; Eva Ryckeboer; Ashim Dhakal; Frédéric Peyskens; Aditya Malik; Bart Kuyken; Haolan Zhao; Shibnath Pathak; Alfonso Ruocco; Andreas De Groote; Pieter Wuytens; Daan Martens; François Leo; Weiqiang Xie; Utsav Dave; Muhammad Muneeb; Pol Van Dorpe; Joris Van Campenhout; Wim Bogaerts; Peter Bienstman; Nicolas Le Thomas; Dries Van Thourhout; Zeger Hens; Günther Roelkens; Roel Baets

There is a rapidly growing demand to use silicon and silicon nitride (Si3N4) integrated photonics for sensing applications, ranging from refractive index to spectroscopic sensing. By making use of advanced CMOS technology, complex miniaturized circuits can be easily realized on a large scale and at a low cost covering visible to mid-IR wavelengths. In this paper we present our recent work on the development of silicon and Si3N4-based photonic integrated circuits for various spectroscopic sensing applications. We report our findings on waveguide-based absorption, and Raman and surface enhanced Raman spectroscopy. Finally we report on-chip spectrometers and on-chip broadband light sources covering very near-IR to mid-IR wavelengths to realize fully integrated spectroscopic systems on a chip.


IEEE Photonics Technology Letters | 2012

High-Efficiency SOI Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrared

Nannicha Hattasan; Bart Kuyken; François Leo; Eva Ryckeboer; Diedrik Vermeulen; Günther Roelkens

We report on high-efficiency silicon-on-insulator (SOI) grating couplers and low-loss single-mode optical waveguides operating in a short-wave infrared. A -3.8 dB coupling efficiency from a standard single-mode fiber to an SOI waveguide at 2.1 μm is obtained experimentally. Single-mode waveguide losses in the short-wave infrared below 0.6 dB/cm are reported.


Biomedical Optics Express | 2014

Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip

Eva Ryckeboer; Ronny Bockstaele; Michael Vanslembrouck; Roel Baets

In this work, we demonstrate in vitro detection of glucose by means of a lab-on-chip absorption spectroscopy approach. This optical method allows label-free and specific detection of glucose. We show glucose detection in aqueous glucose solutions in the clinically relevant concentration range with a silicon-based optofluidic chip. The sample interface is a spiral-shaped rib waveguide integrated on a silicon-on-insulator (SOI) photonic chip. This SOI chip is combined with micro-fluidics in poly(dimethylsiloxane) (PDMS). We apply aqueous glucose solutions with different concentrations and monitor continuously how the transmission spectrum changes due to glucose. Based on these measurements, we derived a linear regression model, to relate the measured glucose spectra with concentration with an error-of-fitting of only 1.14 mM. This paper explains the challenges involved and discusses the optimal configuration for on-chip evanescent absorption spectroscopy. In addition, the prospects for using this sensor for glucose detection in complex physiological media (e.g. serum) is briefly discussed.


Journal of Lightwave Technology | 2017

Expanding the Silicon Photonics Portfolio With Silicon Nitride Photonic Integrated Circuits

Abdul Rahim; Eva Ryckeboer; Ananth Subramanian; Stéphane Clemmen; Bart Kuyken; Ashim Dhakal; Ali Raza; Artur Hermans; Muhammad Muneeb; Sören Dhoore; Yanlu Li; Utsav Dave; Peter Bienstman; Nicolas Le Thomas; Günther Roelkens; Dries Van Thourhout; Philippe Helin; Simone Severi; Xavier Rottenberg; Roel Baets

The high index contrast silicon-on-insulator platform is the dominant CMOS compatible platform for photonic integration. The successful use of silicon photonic chips in optical communication applications has now paved the way for new areas where photonic chips can be applied. It is already emerging as a competing technology for sensing and spectroscopic applications. This increasing range of applications for silicon photonics instigates an interest in exploring new materials, as silicon-on-insulator has some drawbacks for these emerging applications, e.g., silicon is not transparent in the visible wavelength range. Silicon nitride is an alternate material platform. It has moderately high index contrast, and like silicon-on-insulator, it uses CMOS processes to manufacture photonic integrated circuits. In this paper, the advantages and challenges associated with these two material platforms are discussed. The case of dispersive spectrometers, which are widely used in various silicon photonic applications, is presented for these two material platforms.


Lab on a Chip | 2013

Measurement of small molecule diffusion with an optofluidic silicon chip

Eva Ryckeboer; Jan Vierendeels; Agnes Lee; Sam Werquin; Peter Bienstman; Roel Baets

In this work we explore the micro-ring resonator platform to study the diffusion-driven mass transport of small molecules within microfluidic channels. The micro-ring resonators are integrated on a silicon-on-insulator photonic chip and combined with microfluidics in poly(dimethylsiloxane) (PDMS). We apply a strong initial gradient in the solute concentration and use the micro-ring resonators to observe how this concentration evolves over time and space. This can be achieved by tracking the optical resonances of multiple micro-rings as they shift with changing solute concentration. Experiments are performed for both glucose and NaCl and at different temperatures. The measured concentration profiles are used to calculate the diffusion coefficient of both glucose and NaCl in water. The good agreement between measurement and theoretical prediction demonstrates the relevance of this method.


Optics Express | 2014

Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring.

Muhammad Muneeb; Alfonso Ruocco; Aditya Malik; Shibnath Pathak; Eva Ryckeboer; Dorian Sanchez; L. Cerutti; Jean-Baptiste Rodriguez; E. Tournié; Wim Bogaerts; Mk Meint Smit; Günther Roelkens

This paper demonstrates a very compact wavelength meter for on-chip laser monitoring in the shortwave infrared wavelength range based on an optimized arrayed waveguide grating (AWG) filter with an integrated photodiode array. The AWG response is designed to obtain large nearest neighbor crosstalk (i.e. large overlap) between output channels, which allows accurately measuring the wavelength of a laser under test using the centroid detection technique. The passive AWG is fabricated on a 220 nm silicon-on-insulator (SOI) platform and is combined with GaInAsSb-based photodiodes. The photodiodes are heterogeneously integrated on the output grating couplers of the AWG using DVS-BCB adhesive bonding. The complete device with AWG and detectors has a footprint of only 2 mm(2) while the measured accuracy and resolution of the detected wavelength is better than 20pm.

Collaboration


Dive into the Eva Ryckeboer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Tournié

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge