Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Teira is active.

Publication


Featured researches published by Eva Teira.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Archaeal nitrification in the ocean

Cornelia Wuchter; Ben Abbas; Marco J. L. Coolen; Judith van Bleijswijk; Peer Timmers; Marc Strous; Eva Teira; Gerhard J. Herndl; Jack J. Middelburg; Stefan Schouten; Jaap S. Sinninghe Damsté

Marine Crenarchaeota are the most abundant single group of prokaryotes in the ocean, but their physiology and role in marine biogeochemical cycles are unknown. Recently, a member of this clade was isolated from a sea aquarium and shown to be capable of nitrification, tentatively suggesting that Crenarchaeota may play a role in the oceanic nitrogen cycle. We enriched a crenarchaeote from North Sea water and showed that its abundance, and not that of bacteria, correlates with ammonium oxidation to nitrite. A time series study in the North Sea revealed that the abundance of the gene encoding for the archaeal ammonia monooxygenase alfa subunit (amoA) is correlated with a decline in ammonium concentrations and with the abundance of Crenarchaeota. Remarkably, the archaeal amoA abundance was 1–2 orders of magnitude higher than those of bacterial nitrifiers, which are commonly thought to mediate the oxidation of ammonium to nitrite in marine environments. Analysis of Atlantic waters of the upper 1,000 m, where most of the ammonium regeneration and oxidation takes place, showed that crenarchaeotal amoA copy numbers are also 1–3 orders of magnitude higher than those of bacterial amoA. Our data thus suggest a major role for Archaea in oceanic nitrification.


Applied and Environmental Microbiology | 2005

Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean

Gerhard J. Herndl; Thomas Reinthaler; Eva Teira; H.M. van Aken; C. Veth; Annelie Pernthaler; Jakob Pernthaler

ABSTRACT Fluorescence in situ hybridization (FISH) in combination with polynucleotide probes revealed that the two major groups of planktonic Archaea (Crenarchaeota and Euryarchaeota) exhibit a different distribution pattern in the water column of the Pacific subtropical gyre and in the Antarctic Circumpolar Current system. While Euryarchaeota were found to be more dominant in nearsurface waters, Crenarchaeota were relatively more abundant in the mesopelagic and bathypelagic waters. We determined the abundance of archaea in the mesopelagic and bathypelagic North Atlantic along a south-north transect of more than 4,000 km. Using an improved catalyzed reporter deposition-FISH (CARD-FISH) method and specific oligonucleotide probes, we found that archaea were consistently more abundant than bacteria below a 100-m depth. Combining microautoradiography with CARD-FISH revealed a high fraction of metabolically active cells in the deep ocean. Even at a 3,000-m depth, about 16% of the bacteria were taking up leucine. The percentage of Euryarchaeota and Crenarchaeaota taking up leucine did not follow a specific trend, with depths ranging from 6 to 35% and 3 to 18%, respectively. The fraction of Crenarchaeota taking up inorganic carbon increased with depth, while Euryarchaeota taking up inorganic carbon decreased from 200 m to 3,000 m in depth. The ability of archaea to take up inorganic carbon was used as a proxy to estimate archaeal cell production and to compare this archaeal production with total prokaryotic production measured via leucine incorporation. We estimate that archaeal production in the mesopelagic and bathypelagic North Atlantic contributes between 13 to 27% to the total prokaryotic production in the oxygen minimum layer and 41 to 84% in the Labrador Sea Water, declining to 10 to 20% in the North Atlantic Deep Water. Thus, planktonic archaea are actively growing in the dark ocean although at lower growth rates than bacteria and might play a significant role in the oceanic carbon cycle.


Applied and Environmental Microbiology | 2004

Combining Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization and Microautoradiography To Detect Substrate Utilization by Bacteria and Archaea in the Deep Ocean

Eva Teira; Thomas Reinthaler; Annelie Pernthaler; Jakob Pernthaler; Gerhard J. Herndl

ABSTRACT The recently developed CARD-FISH protocol was refined for the detection of marine Archaea by replacing the lysozyme permeabilization treatment with proteinase K. This modification resulted in about twofold-higher detection rates for Archaea in deep waters. Using this method in combination with microautoradiography, we found that Archaea are more abundant than Bacteria (42% versus 32% of 4′,6′-diamidino-2-phenylindole counts) in the deep waters of the North Atlantic and that a larger fraction of Archaea than of Bacteria takes up l-aspartic acid (19% versus 10%).


Deep-sea Research Part I-oceanographic Research Papers | 2002

Plankton respiration in the Eastern Atlantic Ocean

Carol Robinson; Pablo Serret; Gavin H. Tilstone; Eva Teira; Mikhail V. Zubkov; Andrew P. Rees; E. Malcolm S. Woodward

Concurrent measurements of dark community respiration (DCR), gross production (GP), size fractionated primary production (14C PP), nitrogen uptake, nutrients, chlorophyll a concentration, and heterotrophic and autotrophic bacterial abundance were collected from the upper 200 m of a latitudinal (32°S–48°N) transect in the Eastern Atlantic Ocean during May/June 1998. The mean mixed layer respiration rate was 2.5±2.1 mmol O2 m−3 d−1 (n=119) for the whole transect, 2.2±1.1 mmol O2 m−3 d−1 (n=32) in areas where chlorophyll a was <0.5 mg m−3 and 1.5±0.7 mmol O2 m−3 d−1 (n=10) where chlorophyll a was <0.2 mg m−3. These values lie within the range of published data collected in comparable waters, they co-vary with indicators of heterotrophic and autotrophic biomass (heterotrophic bacterial abundance, chlorophyll a concentration, beam attenuation and particulate organic carbon concentration) and they can be reconciled with accepted estimates of total respiratory activity. The mean and median respiratory quotient (RQ), calculated as the ratio of dissolved inorganic carbon production to dissolved oxygen consumption, was 0.8 (n=11). At the time of the study, plankton community respiration exceeded GP in the picoautotroph dominated oligotrophic regions (Eastern Tropical Atlantic [15.5°S–14.2°N] and North Atlantic Subtropical Gyre [21.5–42.5°N]), which amounted to 50% of the stations sampled along the 12,100 km transect. These regions also exhibited high heterotrophic: autotrophic biomass ratios, higher turnover rates of phytoplankton than of bacteria and low f ratios. However, the carbon supply mechanisms required to sustain the rates of respiration higher than GP could not be fully quantified. Future research should aim to determine the temporal balance of respiration and GP together with substrate supply mechanisms in these ocean regions.


Environmental Microbiology | 2008

Linkages between bacterioplankton community composition, heterotrophic carbon cycling and environmental conditions in a highly dynamic coastal ecosystem

Eva Teira; Josep M. Gasol; María Aranguren-Gassis; Ana Belén Méndez Fernández; Jose González; Itziar Lekunberri; X. Antón Álvarez-Salgado

We used mesocosm experiments to study the bacterioplankton community in a highly dynamic coastal ecosystem during four contrasting periods of the seasonal cycle: winter mixing, spring phytoplankton bloom, summer stratification and autumn upwelling. A correlation approach was used in order to measure the degree of coupling between the dynamics of major bacterial groups, heterotrophic carbon cycling and environmental factors. We used catalysed reporter deposition-fluorescence in situ hybridization to follow changes in the relative abundance of the most abundant groups of bacteria (Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes). Bacterial carbon flux-related variables included bacterial standing stock, bacterial production and microbial respiration. The environmental factors included both, biotic variables such as chlorophyll-a concentration, primary production, phytoplankton extracellular release, and abiotic variables such as the concentration of dissolved inorganic and organic nutrients. Rapid shifts in the dominant bacterial groups occurred associated to environmental changes and bacterial bulk functions. An alternation between Alphaproteobacteria and Bacteroidetes was observed associated to different phytoplankton growth phases. The dominance of the group Bacteroidetes was related to high bacterial biomass and production. We found a significant, non-spurious, linkage between the relative abundances of major bacterial groups and bacterial carbon cycling. Our results suggest that bacteria belonging to these major groups could actually share a function in planktonic ecosystems.


Environmental Microbiology Reports | 2009

Growth rates of different phylogenetic bacterioplankton groups in a coastal upwelling system

Eva Teira; Sandra Martínez-García; Christian Lønborg; Xosé Antón Álvarez-Salgado

Microbial degradation of dissolved organic matter (DOM) in planktonic ecosystems is carried out by diverse prokaryotic communities, whose growth rates and patterns of DOM utilization modulate carbon and nutrient biogeochemical cycles at local and global scales. Nine dilution experiments (September 2007 to June 2008) were conducted with surface water from the highly productive coastal upwelling system of the Ría de Vigo (NW Iberian Peninsula) to estimate bacterial growth rates of six relevant marine bacterial groups: Roseobacter, SAR11, Betaproteobacteria,Gammaproteobacteria, SAR86 and Bacteroidetes. Surprisingly, SAR11 dominated over the other bacterial groups in autumn, likely associated to the entry of nutrient-rich, DOC-poor Eastern North Atlantic Central Water (ENACW) into the embayment. Roseobacter and SAR11 showed significantly opposing growth characteristics. SAR11 consistently grows at low rates (range 0.19-0.71 day(-1) ), while Roseobacter has a high growth potential (range 0.70-1.64 day(-1) ). In contrast, Betaproteobacteria, Bacteroidetes, SAR86 and Gammaproteobacteria growth rates widely varied among experiments. Regardless of such temporal variability, mean SAR86 growth rate (range 0.1-1.4 day(-1) ) was significantly lower than that of Gammaproteobacteria (range 0.3-2.1 day(-1) ). Whereas the relative abundance of different bacterial groups showed strong correlations with several environmental variables, group-specific bacterial growth rates did not co-vary with ambient conditions. Our results suggest that different bacterial groups exhibit characteristic growth rates, and, consequently, distinct competitive abilities to succeed under contrasting environmental conditions.


Applied and Environmental Microbiology | 2011

Decrease in the Autotrophic-to-Heterotrophic Biomass Ratio of Picoplankton in Oligotrophic Marine Waters Due to Bottle Enclosure

Alejandra Calvo-Díaz; Laura Díaz-Pérez; Luis Ángel Suárez; Xosé Anxelu G. Morán; Eva Teira; Emilio Marañón

ABSTRACT We investigated the effects of bottle enclosure on autotrophic and heterotrophic picoplankton in North and South subtropical Atlantic oligotrophic waters, where the biomass and metabolism of the microbial community are dominated by the picoplankton size class. We measured changes in both autotrophic (Prochlorococcus, Synechococcus, and picoeukaryotes) and heterotrophic picoplankton biomass during three time series experiments and in 16 endpoint experiments over 24 h in light and dark treatments. Our results showed a divergent effect of bottle incubation on the autotrophic and heterotrophic components of the picoplankton community. The biomass of picophytoplankton showed, on average, a >50% decrease, mostly affecting the picoeukaryotes and, to a lesser extent, Prochlorococcus. In contrast, the biomass of heterotrophic bacteria remained constant or increased during the incubations. We also sampled 10 stations during a Lagrangian study in the North Atlantic subtropical gyre, which enabled us to compare the observed changes in the auto- to heterotrophic picoplankton biomass ratio (AB:HB ratio) inside the incubation bottles with those taking place in situ. While the AB:HB ratio in situ remained fairly constant during the Lagrangian study, it decreased significantly during the 24 h of incubation experiments. Thus, the rapid biomass changes observed in the incubations are artifacts resulting from bottle confinement and do not take place in natural conditions. Our results suggest that short (<1 day) bottle incubations in oligotrophic waters may lead to biased estimates of the microbial metabolic balance by underestimating primary production and/or overestimating bacterial respiration.


FEMS Microbiology Ecology | 2009

Bacterioplankton composition of the coastal upwelling system of ‘Ría de Vigo’, NW Spain

Jorge Alonso-Gutiérrez; Itziar Lekunberri; Eva Teira; Josep M. Gasol; Antonio Figueras; Beatriz Novoa

Catalysed reported deposition-FISH and clone libraries indicated that Roseobacter, followed by Bacteroidetes, and some gammaproteobacterial groups such as SAR86, dominated the composition of bacterioplankton in Ría de Vigo, NW Spain, in detriment to SAR11 (almost absent in this upwelling ecosystem). Since we sampled four times during the year, we observed pronounced changes in the structure of each bacterioplankton component, particularly for the Roseobacter lineage. We suggest that such variations in the coastal upwelling ecosystem of Ría de Vigo were associated with the characteristic phytoplankton communities of the four different hydrographical situations: winter mixing, spring bloom, summer stratification, and autumn upwelling. We retrieved new sequences among the major marine bacterial lineages, particularly among Roseobacter, SAR11, and especially SAR86. The spring community was dominated by two Roseobacter clades that had previously been related to phytoplankton blooms. In the other seasons, communities with higher diversity than the spring one were detected.


Journal of Applied Microbiology | 2007

Prokaryotic community analysis with CARD-FISH in comparison with FISH in ultra-oligotrophic ground- and drinking water.

Inés C. Wilhartitz; Robert L. Mach; Eva Teira; Thomas Reinthaler; Gerhard J. Herndl; Andreas H. Farnleitner

Aims:  We compared the applicability of catalysed reporter deposition fluorescence in situ hybridization (CARD‐FISH) and FISH to enumerate prokaryotic populations in ultra‐oligotrophic alpine groundwaters and bottled mineral water


The ISME Journal | 2015

Global abundance of planktonic heterotrophic protists in the deep ocean

Massimo C. Pernice; Irene Forn; Ana Gomes; Elena Lara; Laura Alonso-Sáez; Jesús M. Arrieta; Francisca C. García; Víctor Hernando-Morales; Roy MacKenzie; Mireia Mestre; Eva Sintes; Eva Teira; Joaquín Valencia; Marta M. Varela; Dolors Vaqué; Carlos M. Duarte; Josep M. Gasol; Ramon Massana

The dark ocean is one of the largest biomes on Earth, with critical roles in organic matter remineralization and global carbon sequestration. Despite its recognized importance, little is known about some key microbial players, such as the community of heterotrophic protists (HP), which are likely the main consumers of prokaryotic biomass. To investigate this microbial component at a global scale, we determined their abundance and biomass in deepwater column samples from the Malaspina 2010 circumnavigation using a combination of epifluorescence microscopy and flow cytometry. HP were ubiquitously found at all depths investigated down to 4000 m. HP abundances decreased with depth, from an average of 72±19 cells ml−1 in mesopelagic waters down to 11±1 cells ml−1 in bathypelagic waters, whereas their total biomass decreased from 280±46 to 50±14 pg C ml−1. The parameters that better explained the variance of HP abundance were depth and prokaryote abundance, and to lesser extent oxygen concentration. The generally good correlation with prokaryotic abundance suggested active grazing of HP on prokaryotes. On a finer scale, the prokaryote:HP abundance ratio varied at a regional scale, and sites with the highest ratios exhibited a larger contribution of fungi molecular signal. Our study is a step forward towards determining the relationship between HP and their environment, unveiling their importance as players in the dark ocean’s microbial food web.

Collaboration


Dive into the Eva Teira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josep M. Gasol

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Manuel Varela

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mar Nieto-Cid

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge