Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Tuomilehto-Wolf is active.

Publication


Featured researches published by Eva Tuomilehto-Wolf.


Nature Genetics | 2001

Haplotype tagging for the identification of common disease genes

Gillian C.L. Johnson; Laura Esposito; Bryan J. Barratt; Annabel N. Smith; Joanne M. Heward; Gianfranco Di Genova; Hironori Ueda; Heather J. Cordell; Iain A. Eaves; Frank Dudbridge; Rebecca C.J. Twells; Felicity Payne; Wil Hughes; Sarah Nutland; Helen Stevens; Phillipa Carr; Eva Tuomilehto-Wolf; Jaakko Tuomilehto; S. C. L. Gough; David G. Clayton; John A. Todd

Genome-wide linkage disequilibrium (LD) mapping of common disease genes could be more powerful than linkage analysis if the appropriate density of polymorphic markers were known and if the genotyping effort and cost of producing such an LD map could be reduced. Although different metrics that measure the extent of LD have been evaluated, even the most recent studies have not placed significant emphasis on the most informative and cost-effective method of LD mapping—that based on haplotypes. We have scanned 135 kb of DNA from nine genes, genotyped 122 single-nucleotide polymorphisms (SNPs; approximately 184,000 genotypes) and determined the common haplotypes in a minimum of 384 European individuals for each gene. Here we show how knowledge of the common haplotypes and the SNPs that tag them can be used to (i) explain the often complex patterns of LD between adjacent markers, (ii) reduce genotyping significantly (in this case from 122 to 34 SNPs), (iii) scan the common variation of a gene sensitively and comprehensively and (iv) provide key fine-mapping data within regions of strong LD. Our results also indicate that, at least for the genes studied here, the current version of dbSNP would have been of limited utility for LD mapping because many common haplotypes could not be defined. A directed re-sequencing effort of the approximately 10% of the genome in or near genes in the major ethnic groups would aid the systematic evaluation of the common variant model of common disease.


American Journal of Human Genetics | 2000

The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes

Soumitra Ghosh; Richard M. Watanabe; Timo T. Valle; Elizabeth R. Hauser; Victoria L. Magnuson; Carl D. Langefeld; Delphine S. Ally; Karen L. Mohlke; Kaisa Silander; Kimmo Kohtamäki; Peter S. Chines; James E. Balow; Gunther Birznieks; Jennie Chang; William Eldridge; Michael R. Erdos; Zarir E. Karanjawala; Julie I. Knapp; Kristina Kudelko; Colin Martin; Anabelle Morales-Mena; Anjene Musick; Tiffany Musick; Carrie Pfahl; Rachel Porter; Joseph B. Rayman; David Rha; Leonid Segal; Shane Shapiro; Ben Shurtleff

We performed a genome scan at an average resolution of 8 cM in 719 Finnish sib pairs with type 2 diabetes. Our strongest results are for chromosome 20, where we observe a weighted maximum LOD score (MLS) of 2.15 at map position 69.5 cM from pter and secondary weighted LOD-score peaks of 2.04 at 56.5 cM and 1.99 at 17.5 cM. Our next largest MLS is for chromosome 11 (MLS = 1.75 at 84.0 cM), followed by chromosomes 2 (MLS = 0.87 at 5.5 cM), 10 (MLS = 0.77 at 75.0 cM), and 6 (MLS = 0.61 at 112.5 cM), all under an additive model. When we condition on chromosome 2 at 8.5 cM, the MLS for chromosome 20 increases to 5.50 at 69.0 cM (P=.0014). An ordered-subsets analysis based on families with high or low diabetes-related quantitative traits yielded results that support the possible existence of disease-predisposing genes on chromosomes 6 and 10. Genomewide linkage-disequilibrium analysis using microsatellite marker data revealed strong evidence of association for D22S423 (P=.00007). Further analyses are being carried out to confirm and to refine the location of these putative diabetes-predisposing genes.


Nature Genetics | 2002

Parameters for reliable results in genetic association studies in common disease

Ingrid Dahlman; Iain A. Eaves; Roman Kosoy; V. Anne Morrison; Joanne M. Heward; S. C. L. Gough; Amit Allahabadia; Jayne A. Franklyn; Jaakko Tuomilehto; Eva Tuomilehto-Wolf; Francesco Cucca; Cristian Guja; Constantin Ionescu-Tirgoviste; Helen Stevens; Philippa Carr; Sarah Nutland; Patricia A. McKinney; Julian Shield; W. Wang; Heather J. Cordell; Neil M Walker; John A. Todd; Patrick Concannon

It is increasingly apparent that the identification of true genetic associations in common multifactorial disease will require studies comprising thousands rather than the hundreds of individuals employed to date. Using 2,873 families, we were unable to confirm a recently published association of the interleukin 12B gene in 422 type I diabetic families. These results emphasize the need for large datasets, small P values and independent replication if results are to be reliable.


Nature Genetics | 2000

The Genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes

Iain A. Eaves; Tony R. Merriman; Rachael Barber; Sarah Nutland; Eva Tuomilehto-Wolf; Jaakko Tuomilehto; Francesco Cucca; John A. Todd

The choice of which population to study in the mapping of common disease genes may be critical. Isolated founder populations, such as that found in Finland, have already proved extremely useful for mapping the genes for specific rare monogenic disorders and are being used in attempts to map the genes underlying common, complex diseases. But simulation results suggest that, under the common disease-common variant hypothesis, most isolated populations will prove no more useful for linkage disequilibrium (LD) mapping of common disease genes than large outbred populations. There is very little empirical data to either support or refute this conclusion at present. Therefore, we evaluated LD between 21 common microsatellite polymorphisms on chromosome 18q21 in 2 genetic isolates (Finland and Sardinia) and compared the results with those observed in two mixed populations (United Kingdom and United States of America). Mean levels of LD were similar across all four populations. Our results provide empirical support for the expectation that genetic isolates like Finland and Sardinia will not prove significantly more valuable than general populations for LD mapping of common variants underlying complex disease.


Diabetologia | 1998

IA-2 antibodies - a sensitive marker of IDDM with clinical onset in childhood and adolescence

K. Savola; Ezio Bonifacio; Petri Kulmala; Paula Vähäsalo; Jukka Karjalainen; Eva Tuomilehto-Wolf; Meriläinen J; Hans K. Åkerblom; M. Knip

Summary To study the relationship of IA-2 antibodies (IA-2A) to other autoantibodies and genetic risk markers in insulin-dependent diabetes mellitus (IDDM), 758 children and adolescents younger than 15 years of age (mean age 8.4 years) with newly diagnosed diabetes were analysed for IA-2A, GAD antibodies (GADA) and insulin autoantibodies (IAA) with radiobinding assays, for islet cell antibodies (ICA) with immunofluorescence and for HLA DR alleles by serology. IA-2A were detected in 85.9 % of cases with no association with gender or age. An overwhelming majority of the patients (71.3 %) tested positive for three or more antibodies, and 90.7 % for at least two. Fifty-four subjects (7.1 %) had one antibody detectable, whereas only 2.1 % of the patients tested negative for all four. A higher proportion of patients was positive for IA-2A and/or GADA than for ICA alone (95.5 vs 84.2 %, p < 0.001). The prevalence and level of IA-2A were increased in cases carrying HLA DR4/non-DR3 compared with other DR combinations. The results indicate that almost all patients with newly diagnosed childhood IDDM can be identified by screening with these four autoantibodies. The combination of IA-2A and/or GADA had a higher sensitivity for IDDM than ICA alone. The close association between IA-2A and HLA DR4, the strongest single allele predisposing to IDDM, suggests that IA-2A may be a more specific marker of beta-cell destruction than GADA, which have been shown to associate with the DR3 allele and thyroid autoimmunity. [Diabetologia (1998) 41: 424–429]


Diabetologia | 1999

Record-high incidence of Type I (insulin-dependent) diabetes mellitus in Finnish children

J. Tuomilehto; Marjatta Karvonen; Janne Pitkäniemi; E. Virtala; K. Kohtamäki; L. Toivanen; Eva Tuomilehto-Wolf

Aims/hypothesis. In Finland, the incidence of Type I (insulin-dependent) diabetes mellitus in children aged 14 years or under is the highest in the world and the trend in incidence has been increasing. Our aim was to determine the most recent trends in incidence and the age distribution at diagnosis of Type I diabetes. Methods. Data on the incidence of Type I diabetes in Finland nationwide were obtained from two sources: for the period 1965 to 1986 from the Central Drug Registry of the Social Insurance Institution and for the period 1987 to1996 from the prospective childhood Type I diabetes registry. The annual incidence was calculated per 100 000 people. The increase and the trend in incidence were estimated by fitting the linear regression model with the annual incidence data. Results. During 1987 to 1993 the incidence of Type I diabetes seemed to be rather stable at 36 per 100 000 per year. The incidence has continued to increase thereafter and reached 45 per 100 000 per year in 1996. The analysis of the long-term trend in incidence between 1965 and 1996 showed an absolute incidence increase of 0.67 per year on average being 3.4 % compared with the incidence in 1965. The increase from 1987 to 1996 was highest in very young children 1–4 years old at diagnosis. Conclusion/interpretation. The high incidence of Type I diabetes in Finnish children has thus far not levelled off but is increasing further. If the trend continues, the predicted incidence in Finland will be approximately 50 per 100 000 per year in the year 2010. [Diabetologia (1999) 42: 655–660]


American Journal of Human Genetics | 2000

The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. II. An autosomal genome scan for diabetes-related quantitative-trait loci

Richard M. Watanabe; Soumitra Ghosh; Carl D. Langefeld; Timo T. Valle; Elizabeth R. Hauser; Victoria L. Magnuson; Karen L. Mohlke; Kaisa Silander; Delphine S. Ally; Peter S. Chines; Jillian Blaschak-Harvan; Julie A. Douglas; William L. Duren; Michael P. Epstein; Tasha E. Fingerlin; Hong Shi Kaleta; Ethan M. Lange; Chun Li; Richard C. McEachin; Heather M. Stringham; Edward H. Trager; Peggy P. White; James E. Balow; Gunther Birznieks; Jennie Chang; William Eldridge; Michael R. Erdos; Zarir E. Karanjawala; Julie I. Knapp; Kristina Kudelko

Type 2 diabetes mellitus is a complex disorder encompassing multiple metabolic defects. We report results from an autosomal genome scan for type 2 diabetes-related quantitative traits in 580 Finnish families ascertained for an affected sibling pair and analyzed by the variance components-based quantitative-trait locus (QTL) linkage approach. We analyzed diabetic and nondiabetic subjects separately, because of the possible impact of disease on the traits of interest. In diabetic individuals, our strongest results were observed on chromosomes 3 (fasting C-peptide/glucose: maximum LOD score [MLS] = 3.13 at 53.0 cM) and 13 (body-mass index: MLS = 3.28 at 5.0 cM). In nondiabetic individuals, the strongest results were observed on chromosomes 10 (acute insulin response: MLS = 3.11 at 21.0 cM), 13 (2-h insulin: MLS = 2.86 at 65.5 cM), and 17 (fasting insulin/glucose ratio: MLS = 3.20 at 9.0 cM). In several cases, there was evidence for overlapping signals between diabetic and nondiabetic individuals; therefore we performed joint analyses. In these joint analyses, we observed strong signals for chromosomes 3 (body-mass index: MLS = 3.43 at 59.5 cM), 17 (empirical insulin-resistance index: MLS = 3.61 at 0.0 cM), and 19 (empirical insulin-resistance index: MLS = 2.80 at 74.5 cM). Integrating genome-scan results from the companion article by Ghosh et al., we identify several regions that may harbor susceptibility genes for type 2 diabetes in the Finnish population.


Diabetologia | 1995

Insulin receptor substrate-1 gene mutations in NIDDM; implications for the study of polygenic disease

Graham A. Hitman; K. Hawrami; M. I. McCarthy; Viswanathan M; Chamukuttan Snehalatha; Jaakko Tuomilehto; Eva Tuomilehto-Wolf; A. Nissinen; O. Pedersen

SummaryVariations in the coding regions of the insulin receptor substrate-1 (IRS-1) gene have recently been suggested to contribute to the susceptibility of non-insulin-dependent diabetes mellitus (NIDDM). The purpose of this study was to examine the role of the IRS-1 missense mutations at codons 972 (glycine to arginine) and 513 (alanine to proline) in two diverse populations from South India and Finland at high risk for NIDDM. DNA was amplified and digested with restriction enzymes BstN1 to detect the codon 972 mutation and Dra III to detect the codon 513 mutation. The codon 513 mutation was not found in the study subjects. The codon 972 mutation was present in 10.3% of 126 middle-aged NIDDM subjects and 5.3% of 95 matched control subjects in the South Indians (p=0.17). In elderly Finnish subjects the frequency of the mutation was 7.5% in 40 NIDDM subjects and 7% in 42 matched control subjects. The frequency of codon 972 mutation in the South Indian NIDDM subjects was very similar to the two previously published studies in Danish and French subjects although each study individually fails to reach conventional levels of significance. The data from all four ethnic groups were analysed together after ascertaining that significant heterogeneity did not exist between the studies. Overall, the frequency of the codon 972 mutation is found in 10.7% NIDDM subjects and 5.8% control subjects (p = 0.02). These studies suggest that the codon 972 mutation of the IRS-1 gene might act as a susceptibility gene predisposing to NIDDM in certain ethnic groups.


Diabetes Care | 1998

Mapping Genes for NIDDM: Design of the Finland—United States Investigation of NIDDM Genetics (FUSION) Study

Timo T. Valle; Jaakko Tuomilehto; Richard N. Bergman; Soumitra Ghosh; Elizabeth R. Hauser; Johan G. Eriksson; Stella J. Nylund; Kimmo Kohtamäki; Liisa Toivanen; Gabriele Vidgren; Eva Tuomilehto-Wolf; Christian Ehnholm; Jillian Blaschak; Carl D. Langefeld; Richard M. Watanabe; Victoria L. Magnuson; Delphine S. Ally; William Hagopian; Edna H. Ross; Thomas A. Buchanan; Francis S. Collins; Michael Boehnke

OBJECTIVE To map and identify susceptibility genes for NIDDM and for the intermediate quantitative traits associated with NIDDM. RESEARCH DESIGN AND METHODS We describe the methodology and sample of the Finland-United States Investigation of NIDDM Genetics (FUSION) study. The whole genome search approach is being applied in studies of several different ethnic groups to locate susceptibility genes for NIDDM. Detailed description of the study materials and designs of such studies are important, particularly when comparing the findings in these studies and when combining different data sets. RESULTS Using a careful selection strategy, we have ascertained 495 families with confirmed NIDDM in at least two siblings and no history of IDDM among the first-degree relatives. These families were chosen from more than 22,000 NIDDM patients, representative of patients with NIDDM in the Finnish population. In a subset of families, a spouse and offspring were sampled, and they participated in a frequently sampled intravenous glucose tolerance test (FSIGT) analyzed with the Minimal Model. An FSIGT was completed successfully for at least two nondiabetic offspring in 156 families with a confirmed nondiabetic spouse and no history of IDDM in first-degree relatives. CONCLUSIONS Our work demonstrates the feasibility of collecting a large number of affected sib-pair families with NIDDM to provide data that will enable a whole genome search approach, including linkage analysis.


Genes and Immunity | 2005

Finnish case-control and family studies support PTPN22 R620W polymorphism as a risk factor in rheumatoid arthritis, but suggest only minimal or no effect in juvenile idiopathic arthritis.

Michael F. Seldin; Russell Shigeta; Kari Laiho; Hongzhe Li; Anneli Savolainen; Marjatta Leirisalo-Repo; K Aho; Eva Tuomilehto-Wolf; K Kaarela; Markku Kauppi; H C Alexander; Ann B. Begovich; Jaakko Tuomilehto

Several studies have identified the PTPN22 allelic variant 1858 C/T that encodes the R620W amino-acid change as a putative susceptibility factor in autoimmune diseases. The current study was undertaken to examine a large cohort of Finnish rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA) subjects using both population control and, importantly, family-based association methods. The latter is particularly important when, as is the case for the 1858 C/T polymorphism, the frequency of the variant allele (T) differs in both major ancestral populations and in subpopulations. The analysis of rheumatoid factor-positive 1030 RA probands from Finland provides strong support for association of this variant in both population studies (allele specific odds ratio (OR)=1.47, 95% confidence interval (CI)=1.27–1.70, P=3 × 10−7) and in family studies (P<10−6). In contrast, no allelic association was seen with JIA (230 probands) and only weak evidence for a genotypic effect of 1858T homozygotes was observed in this population.

Collaboration


Dive into the Eva Tuomilehto-Wolf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Todd

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristian Guja

Carol Davila University of Medicine and Pharmacy

View shared research outputs
Top Co-Authors

Avatar

Dag E. Undlien

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marjatta Karvonen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Helen Rance

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge