Evan A. Parker
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evan A. Parker.
Mbio | 2015
Zachery T. Lewis; Sarah M. Totten; Jennifer T. Smilowitz; Mina Popovic; Evan A. Parker; Danielle G. Lemay; Maxwell L. Van Tassell; Michael J. Miller; Yong Su Jin; J. Bruce German; Carlito B. Lebrilla; David A. Mills
BackgroundIndividuals with inactive alleles of the fucosyltransferase 2 gene (FUT2; termed the ‘secretor’ gene) are common in many populations. Some members of the genus Bifidobacterium, common infant gut commensals, are known to consume 2′-fucosylated glycans found in the breast milk of secretor mothers. We investigated the effects of maternal secretor status on the developing infant microbiota with a special emphasis on bifidobacterial species abundance.ResultsOn average, bifidobacteria were established earlier and more often in infants fed by secretor mothers than in infants fed by non-secretor mothers. In secretor-fed infants, the relative abundance of the Bifidobacterium longum group was most strongly correlated with high percentages of the order Bifidobacteriales. Conversely, in non-secretor-fed infants, Bifidobacterium breve was positively correlated with Bifidobacteriales, while the B. longum group was negatively correlated. A higher percentage of bifidobacteria isolated from secretor-fed infants consumed 2′-fucosyllactose. Infant feces with high levels of bifidobacteria had lower milk oligosaccharide levels in the feces and higher amounts of lactate. Furthermore, feces containing different bifidobacterial species possessed differing amounts of oligosaccharides, suggesting differential consumption in situ.ConclusionsInfants fed by non-secretor mothers are delayed in the establishment of a bifidobacteria-laden microbiota. This delay may be due to difficulties in the infant acquiring a species of bifidobacteria able to consume the specific milk oligosaccharides delivered by the mother. This work provides mechanistic insight into how milk glycans enrich specific beneficial bacterial populations in infants and reveals clues for enhancing enrichment of bifidobacterial populations in at risk populations - such as premature infants.
Proteomics | 2015
David C. Dallas; Andres Guerrero; Evan A. Parker; Randall C. Robinson; Junai Gan; J. Bruce German; Daniela Barile; Carlito B. Lebrilla
Peptidomics is an emerging field branching from proteomics that targets endogenously produced protein fragments. Endogenous peptides are often functional within the body—and can be both beneficial and detrimental. This review covers the use of peptidomics in understanding digestion, and identifying functional peptides and biomarkers. Various techniques for peptide and glycopeptide extraction, both at analytical and preparative scales, and available options for peptide detection with MS are discussed. Current algorithms for peptide sequence determination, and both analytical and computational techniques for quantification are compared. Techniques for statistical analysis, sequence mapping, enzyme prediction, and peptide function, and structure prediction are explored.
Molecular & Cellular Proteomics | 2014
Andres Guerrero; David C. Dallas; Stephanie Contreras; Sabrina Chee; Evan A. Parker; Xin Sun; Lauren M. Dimapasoc; Daniela Barile; J. Bruce German; Carlito B. Lebrilla
An extensive mass spectrometry analysis of the human milk peptidome has revealed almost 700 endogenous peptides from 30 different proteins. Two in-house computational tools were created and used to visualize and interpret the data through both alignment of the peptide quasi-molecular ion intensities and estimation of the differential enzyme participation. These results reveal that the endogenous proteolytic activity in the mammary gland is remarkably specific and well conserved. Certain proteins—not necessarily the most abundant ones—are digested by the proteases present in milk, yielding endogenous peptides from selected regions. Our results strongly suggest that factors such as the presence of specific proteases, the position and concentration of cleavage sites, and, more important, the intrinsic disorder of segments of the protein drive this proteolytic specificity in the mammary gland. As a consequence of this selective hydrolysis, proteins that typically need to be cleaved at specific positions in order to exert their activity are properly digested, and bioactive peptides encoded in certain protein sequences are released. Proteins that must remain intact in order to maintain their activity in the mammary gland or in the neonatal gastrointestinal tract are unaffected by the hydrolytic environment present in milk. These results provide insight into the intrinsic structural mechanisms that facilitate the selectivity of the endogenous milk protease activity and might be useful to those studying the peptidomes of other biofluids.
Journal of Proteome Research | 2015
Qiuting Hong; L. Renee Ruhaak; Carol Stroble; Evan A. Parker; Jincui Huang; Emanual Maverakis; Carlito B. Lebrilla
A comprehensive glycan map was constructed for the top eight abundant glycoproteins in plasma using both specific and nonspecific enzyme digestions followed by nano liquid chromatography (LC)-chip/quadrupole time-of-flight mass spectrometry (MS) analysis. Glycopeptides were identified using an in-house software tool, GPFinder. A sensitive and reproducible multiple reaction monitoring (MRM) technique on a triple quadrupole MS was developed and applied to quantify immunoglobulins G, A, M, and their site-specific glycans simultaneously and directly from human serum/plasma without protein enrichments. A total of 64 glycopeptides and 15 peptides were monitored for IgG, IgA, and IgM in a 20 min ultra high performance (UP)LC gradient. The absolute protein contents were quantified using peptide calibration curves. The glycopeptide ion abundances were normalized to the respective protein abundances to separate protein glycosylation from protein expression. This technique yields higher method reproducibility and less sample loss when compared with the quantitation method that involves protein enrichments. The absolute protein quantitation has a wide linear range (3-4 orders of magnitude) and low limit of quantitation (femtomole level). This rapid and robust quantitation technique, which provides quantitative information for both proteins and glycosylation, will further facilitate disease biomarker discoveries.
Analytical and Bioanalytical Chemistry | 2014
Sarah M. Totten; Lauren D. Wu; Evan A. Parker; Jasmine C.C. Davis; Serenus Hua; Carol Stroble; L. Renee Ruhaak; Jennifer T. Smilowitz; J. Bruce German; Carlito B. Lebrilla
AbstractGlycomic analysis is the comprehensive determination of glycan (oligosaccharide) structures with quantitative information in a biological sample. Rapid-throughput glycomics is complicated due to the lack of a template, which has greatly facilitated analysis in the field of proteomics. Furthermore, the large similarities in structures make fragmentation spectra (as obtained in electron impact ionization and tandem mass spectrometry) less definitive for identification as it has been in metabolomics. In this study, we develop a concept of rapid-throughput glycomics on human milk oligosaccharides, which have proven to be an important bioactive component of breast milk, providing the infant with protection against pathogenic infection and supporting the establishment of a healthy microbiota. To better understand the relationship between diverse oligosaccharides structures and their biological function as anti-pathogenic and prebiotic compounds, large human studies are needed, which necessitate rapid- to high-throughput analytical platforms. Herein, a complete glycomics methodology is presented, evaluating the most effective human milk oligosaccharide (HMO) extraction protocols, the linearity and reproducibility of the nano-liquid chromatography chip time-of-flight mass spectrometry (nano-LC chip-TOF MS) method, and the efficacy of newly developed, in-house software for chromatographic peak alignment that allows for rapid data analysis. High instrument stability and retention time reproducibility, together with the successful automated alignment of hundreds of features in hundreds of milk samples, allow for the use of an HMO library for rapid assignment of fully annotated structures. Graphical Abstractᅟ
Journal of Proteome Research | 2015
Jincui Huang; Andres Guerrero; Evan A. Parker; John S. Strum; Jennifer T. Smilowitz; J. Bruce German; Carlito B. Lebrilla
Secretory immunoglobulin A (sIgA) is a major glycoprotein in milk and plays a key role in mediating immune protection of the gut mucosa. Although it is a highly glycosylated protein, its site-specific glycosylation and associated glycan micro-heterogeneity have still not been fully elucidated. In this study, the site-specific glycosylation of sIgA isolated from human colostrum (n = 3) was analyzed using a combination of LC-MS and LC-MS/MS and in-house software (Glycopeptide Finder). The majority of the glycans found are biantennary structures with one or more acidic Neu5Ac residues; however, a large fraction belonged to truncated complex structures with terminal GlcNAc. Multiple glycosites were identified with nearly 30 glycan compositions located at seven sites on the secretory component, six compositions at a single site on the J chain, and 16 compositions at five sites on the IgA heavy (H) chain. Site-specific heterogeneity and relative quantitation of each composition and the extent of occupation at each site were determined using nonspecific proteases. Additionally, 54 O-linked glycan compositions located at the IgA1 hinge region (HR) were identified by comparison against a theoretical O-glycopeptide library. This represents the most comprehensive report to date detailing the complexity of glycan micro-heterogeneity with relative quantitation of glycoforms for each glycosylation site on milk sIgA. This strategy further provides a general method for determining site-specific glycosylation in large protein complexes.
Journal of Nutrition | 2015
David C. Dallas; C.J. Smink; Randall C. Robinson; Tian Tian; Andres Guerrero; Evan A. Parker; Jennifer T. Smilowitz; Kasper Hettinga; Mark A. Underwood; Carlito B. Lebrilla; German Jb; Daniela Barile
BACKGROUND Hundreds of naturally occurring milk peptides are present in term human milk. Preterm milk is produced before complete maturation of the mammary gland, which could change milk synthesis and secretion processes within the mammary gland, leading to differences in protein expression and enzymatic activity, thereby resulting in an altered peptide profile. OBJECTIVE This study examined differences in peptides present between milk from women delivering at term and women delivering prematurely. METHODS Nano-LC tandem mass spectrometry was employed to identify naturally occurring peptides and compare their abundances between term and preterm human milk samples at multiple time points over lactation. Term milk samples were collected from 8 mothers and preterm milk was collected from 14 mothers. The 28 preterm and 32 term human milk samples were divided into 4 groups based on day of collection (<14, 14-28, 29-41, and 42-58 d). RESULTS Preterm milk peptide counts, ion abundance, and concentration were significantly higher in preterm milk than term milk. Bioinformatic analysis of the cleavage sites for peptides identified suggested that plasmin was more active in preterm milk than term milk and that cytosol aminopeptidase and carboxypeptidase B2 likely contribute to extensive milk protein breakdown. Many identified milk peptides in both term and preterm milk overlapped with known functional peptides, including antihypertensive, antimicrobial, and immunomodulatory peptides. CONCLUSION The high protein degradation by endogenous proteases in preterm milk might attenuate problems because of the preterm infants immature digestive system. This trial was registered at clinicaltrials.gov as NCT01817127.
Journal of Agricultural and Food Chemistry | 2014
David C. Dallas; Andres Guerrero; Evan A. Parker; Luis A. Garay; Aashish Bhandari; Carlito B. Lebrilla; Daniela Barile; J. Bruce German
Bovine milk is known to contain naturally occurring peptides, but relatively few of their sequences have been determined. Human milk contains hundreds of endogenous peptides, and the ensemble has been documented for antimicrobial actions. Naturally occurring peptides from bovine milk were sequenced and compared with human milk peptides. Bovine milk samples from six cows in second-stage peak lactation at 78-121 days postpartum revealed 159 peptides. Most peptides (73%) were found in all six cows sampled, demonstrating the similarity of the intramammary peptide degradation across these cows. One peptide sequence, ALPIIQKLEPQIA from bovine perilipin 2, was identical to another found in human milk. Most peptides derived from β-casein, αs1-casein, and αs2-casein. No peptides derived from abundant bovine milk proteins such as lactoferrin, β-lactoglobulin, and secretory immunoglobulin A. The enzymatic cleavage analysis revealed that milk proteins were degraded by plasmin, cathepsins B and D, and elastase in all samples.
Journal of Proteome Research | 2015
L. Renee Ruhaak; Sandra L. Taylor; Carol Stroble; Uyen Thao Nguyen; Evan A. Parker; Ting Song; Carlito B. Lebrilla; William N. Rom; Harvey I. Pass; Kyoungmi Kim; Karen Kelly; Suzanne Miyamoto
To decrease the mortality of lung cancer, better screening and diagnostic tools as well as treatment options are needed. Protein glycosylation is one of the major post-translational modifications that is altered in cancer, but it is not exactly clear which glycan structures are affected. A better understanding of the glycan structures that are differentially regulated in lung tumor tissue is highly desirable and will allow us to gain greater insight into the underlying biological mechanisms of aberrant glycosylation in lung cancer. Here, we assess differential glycosylation patterns of lung tumor tissue and nonmalignant tissue at the level of individual glycan structures using nLC-chip-TOF-MS. Using tissue samples from 42 lung adenocarcinoma patients, 29 differentially expressed (FDR < 0.05) glycan structures were identified. The levels of several oligomannose type glycans were upregulated in tumor tissue. Furthermore, levels of fully galactosylated glycans, some of which were of the hybrid type and mostly without fucose, were decreased in cancerous tissue, whereas levels of non- or low-galactosylated glycans mostly with fucose were increased. To further assess the regulation of the altered glycosylation, the glycomics data was compared to publicly available gene expression data from lung adenocarcinoma tissue compared to nonmalignant lung tissue. The results are consistent with the possibility that the observed N-glycan changes have their origin in differentially expressed glycosyltransferases. These results will be used as a starting point for the further development of clinical glycan applications in the fields of imaging, drug targeting, and biomarkers for lung cancer.
Analytical and Bioanalytical Chemistry | 2017
Jincui Huang; Muchena J. Kailemia; Elisha Goonatilleke; Evan A. Parker; Qiuting Hong; Rocchina Sabia; Jennifer T. Smilowitz; J. Bruce German; Carlito B. Lebrilla
AbstractHuman milk plays a substantial role in the child growth, development and determines their nutritional and health status. Despite the importance of the proteins and glycoproteins in human milk, very little quantitative information especially on their site-specific glycosylation is known. As more functions of milk proteins and other components continue to emerge, their fine-detailed quantitative information is becoming a key factor in milk research efforts. The present work utilizes a sensitive label-free MRM method to quantify seven milk proteins (α-lactalbumin, lactoferrin, secretory immunoglobulin A, immunoglobulin G, immunoglobulin M, α1-antitrypsin, and lysozyme) using their unique peptides while at the same time, quantifying their site-specific N-glycosylation relative to the protein abundance. The method is highly reproducible, has low limit of quantitation, and accounts for differences in glycosylation due to variations in protein amounts. The method described here expands our knowledge about human milk proteins and provides vital details that could be used in monitoring the health of the infant and even the mother. Graphical AbstractThe glycopeptides EICs generated from QQQ