Evan A. Zamir
University of Kansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evan A. Zamir.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Evan A. Zamir; Andras Czirok; Cheng Cui; Charles A. E. Little; Brenda J. Rongish
Gastrulation is a fundamental process in early development that results in the formation of three primary germ layers. During avian gastrulation, presumptive mesodermal cells in the dorsal epiblast ingress through a furrow called the primitive streak (PS), and subsequently move away from the PS and form adult tissues. The biophysical mechanisms driving mesodermal cell movements during gastrulation in amniotes, notably warm-blooded embryos, are not understood. Until now, a major challenge has been distinguishing local individual cell-autonomous (active) displacements from convective displacements caused by large-scale (bulk) morphogenetic tissue movements. To address this problem, we used multiscale, time-lapse microscopy and a particle image velocimetry method for computing tissue displacement fields. Immunolabeled fibronectin was used as an in situ marker for quantifying tissue displacements. By imaging fluorescently labeled mesodermal cells and surrounding extracellular matrix simultaneously, we were able to separate directly the active and passive components of cell displacement during gastrulation. Our results reveal the following: (i) Convective tissue motion contributes significantly to total cell displacement and must be subtracted to measure true cell-autonomous displacement; (ii) Cell-autonomous displacement decreases gradually after egression from the PS; and (iii) There is an increasing cranial-to-caudal (head-to-tail) cell-autonomous motility gradient, with caudal cells actively moving away from the PS faster than cranial cells. These studies show that, in some regions of the embryo, total mesodermal cell displacements are mostly due to convective tissue movements; thus, the data have profound implications for understanding cell guidance mechanisms and tissue morphogenesis in warm-blooded embryos.
PLOS Biology | 2008
Evan A. Zamir; Brenda J. Rongish; Charles D. Little
Galileo described the concept of motion relativity—motion with respect to a reference frame—in 1632. He noted that a person below deck would be unable to discern whether the boat was moving. Embryologists, while recognizing that embryonic tissues undergo large-scale deformations, have failed to account for relative motion when analyzing cell motility data. A century of scientific articles has advanced the concept that embryonic cells move (“migrate”) in an autonomous fashion such that, as time progresses, the cells and their progeny assemble an embryo. In sharp contrast, the motion of the surrounding extracellular matrix scaffold has been largely ignored/overlooked. We developed computational/optical methods that measure the extent embryonic cells move relative to the extracellular matrix. Our time-lapse data show that epiblastic cells largely move in concert with a sub-epiblastic extracellular matrix during stages 2 and 3 in primitive streak quail embryos. In other words, there is little cellular motion relative to the extracellular matrix scaffold—both components move together as a tissue. The extracellular matrix displacements exhibit bilateral vortical motion, convergence to the midline, and extension along the presumptive vertebral axis—all patterns previously attributed solely to cellular “migration.” Our time-resolved data pose new challenges for understanding how extracellular chemical (morphogen) gradients, widely hypothesized to guide cellular trajectories at early gastrulation stages, are maintained in this dynamic extracellular environment. We conclude that models describing primitive streak cellular guidance mechanisms must be able to account for sub-epiblastic extracellular matrix displacements.
Annals of Biomedical Engineering | 2005
Evan A. Zamir; Andras Czirok; Brenda J. Rongish; Charles A. E. Little
The early stages of vertebrate development, encompassing gastrulation, segmentation, and caudal axis formation, presumably involve large (finite) morphogenetic deformations; however, there are few quantitative biomechanical data available for describing such large-scale or tissue-level deformations in the embryo. In this study, we present a new method for automated computational “tissue fate mapping,” by combining a recently developed high-resolution time-lapse digital microscopy system for whole-avian embryo imaging with particle image velocimetry (PIV), a well-established digital image correlation technique for measuring continuum deformations. Tissue fate mapping, as opposed to classical cell fate mapping or other cell tracking methods, is used to track the spatiotemporal trajectories of arbitrary (virtual) tissue material points in various layers of the embryo, which can then be used to calculate finite morphogenetic deformation or strain maps. To illustrate the method, we present representative tissue fate and strain mapping data for normal early-stage quail embryos. These data demonstrate, to our knowledge, for the first time, large tissue-level deformations that are shared between different germ layers in the embryo, suggesting a more global morphogenetic patterning mechanism than had been previously appreciated.
Current Topics in Developmental Biology | 2006
Andras Czirok; Evan A. Zamir; Michael B. Filla; Charles D. Little; Brenda J. Rongish
This chapter focuses on the in vivo macroassembly dynamics of fibronectin and fibrillin-2--two prominent extracellular matrix (ECM) components, present in vertebrate embryos at the earliest stages of development. The ECM is an inherently dynamic structure with a well-defined position fate: ECM filaments are not only anchored to and move with established tissue boundaries, but are repositioned prior to the formation of new anatomical features. We distinguish two ECM filament relocation processes-each operating on different length scales. First, ECM filaments are moved by large-scale tissue motion, which rearranges major organ primordia within the embryo. The second type of motion, on the scale of the individual ECM filaments, is driven by local motility and protrusive activity of nearby cells. The motion decomposition is made practically possible by recent advances in microscopy and high-resolution particle image velocimetry algorithms. We demonstrate that both kinds of motion contribute substantially to the establishment of normal ECM structure, and both must be taken into account when attempting to understand ECM macroassembly during embryonic morphogenesis. The tissue-scale motion changes the local amount (density) and the tissue-level structure (e.g., orientation) of ECM fibers. Local reorganization includes filament assembly and the segregation of ECM into specific patterns. Local reorganization takes place most actively at Hensens node and around the primitive streak. These regions are also sites of active cell migration, where fibrillin-2 and fibronectin are often colocalized in ECM globules, and new fibrillin-2 foci are deposited. During filament assembly, the globular patches of ECM are joined into larger linear structures in a hierarchical process: increasingly larger structures are created by the aggregation of smaller units. A future understanding of ECM assembly thus requires the study of the complex interactions between biochemical assembly steps, local cell action, and tissue motion.
Current Topics in Developmental Biology | 2008
Andras Czirok; Evan A. Zamir; András Szabó; Charles D. Little
Birth Defects Research Part C-embryo Today-reviews | 2004
Michael B. Filla; Andras Czirok; Evan A. Zamir; Charles D. Little; Tracey J. Cheuvront; Brenda J. Rongish
Archive | 2006
Evan A. Zamir; Paul A. Rupp; Charles D. Little
Development | 2012
Roland Aufschnaiter; Evan A. Zamir; Charles D. Little; Suat Özbek; Sandra Münder; Charles N. David; Li Li; Michael P. Sarras; Xiaoming Zhang
The FASEB Journal | 2008
Charles D. Little; Brenda J. Rongish; Andras Czirok; Evan A. Zamir; Cheng Cui
The FASEB Journal | 2008
Brenda J. Rongish; Evan A. Zamir; Cheng Cui; Charles D. Little