Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evan Bolton is active.

Publication


Featured researches published by Evan Bolton.


Annual Reports in Computational Chemistry | 2008

PubChem: Integrated Platform of Small Molecules and Biological Activities

Evan Bolton; Yanli Wang; Paul A. Thiessen; Stephen H. Bryant

Abstract PubChem is an open repository for experimental data identifying the biological activities of small molecules. PubChem contents include more than: 1000 bioassays, 28 million bioassay test outcomes, 40 million substance contributed descriptions, and 19 million unique compound structures contributed from over 70 depositing organizations. PubChem provides a significant, publicly accessible platform for mining the biological information of small molecules.


Nucleic Acids Research | 2016

PubChem Substance and Compound databases

Sunghwan Kim; Paul A. Thiessen; Evan Bolton; Jie Chen; Gang Fu; Asta Gindulyte; Lianyi Han; Jane He; Siqian He; Benjamin A. Shoemaker; Jiyao Wang; Bo Yu; Jian-Jian Zhang; Stephen H. Bryant

PubChem (https://pubchem.ncbi.nlm.nih.gov) is a public repository for information on chemical substances and their biological activities, launched in 2004 as a component of the Molecular Libraries Roadmap Initiatives of the US National Institutes of Health (NIH). For the past 11 years, PubChem has grown to a sizable system, serving as a chemical information resource for the scientific research community. PubChem consists of three inter-linked databases, Substance, Compound and BioAssay. The Substance database contains chemical information deposited by individual data contributors to PubChem, and the Compound database stores unique chemical structures extracted from the Substance database. Biological activity data of chemical substances tested in assay experiments are contained in the BioAssay database. This paper provides an overview of the PubChem Substance and Compound databases, including data sources and contents, data organization, data submission using PubChem Upload, chemical structure standardization, web-based interfaces for textual and non-textual searches, and programmatic access. It also gives a brief description of PubChem3D, a resource derived from theoretical three-dimensional structures of compounds in PubChem, as well as PubChemRDF, Resource Description Framework (RDF)-formatted PubChem data for data sharing, analysis and integration with information contained in other databases.


Nucleic Acids Research | 2012

PubChem's BioAssay Database

Yanli Wang; Jewen Xiao; Tugba O. Suzek; Jian Zhang; Jiyao Wang; Zhigang Zhou; Lianyi Han; Karen Karapetyan; Svetlana Dracheva; Benjamin A. Shoemaker; Evan Bolton; Asta Gindulyte; Stephen H. Bryant

PubChem (http://pubchem.ncbi.nlm.nih.gov) is a public repository for biological activity data of small molecules and RNAi reagents. The mission of PubChem is to deliver free and easy access to all deposited data, and to provide intuitive data analysis tools. The PubChem BioAssay database currently contains 500 000 descriptions of assay protocols, covering 5000 protein targets, 30 000 gene targets and providing over 130 million bioactivity outcomes. PubChems bioassay data are integrated into the NCBI Entrez information retrieval system, thus making PubChem data searchable and accessible by Entrez queries. Also, as a repository, PubChem constantly optimizes and develops its deposition system answering many demands of both high- and low-volume depositors. The PubChem information platform allows users to search, review and download bioassay description and data. The PubChem platform also enables researchers to collect, compare and analyze biological test results through web-based and programmatic tools. In this work, we provide an update for the PubChem BioAssay resource, including information content growth, data model extension and new developments of data submission, retrieval, analysis and download tools.


Nucleic Acids Research | 2010

An overview of the PubChem BioAssay resource

Yanli Wang; Evan Bolton; Svetlana Dracheva; Karen Karapetyan; Benjamin A. Shoemaker; Tugba O. Suzek; Jiyao Wang; Jewen Xiao; Jian Zhang; Stephen H. Bryant

The PubChem BioAssay database (http://pubchem.ncbi.nlm.nih.gov) is a public repository for biological activities of small molecules and small interfering RNAs (siRNAs) hosted by the US National Institutes of Health (NIH). It archives experimental descriptions of assays and biological test results and makes the information freely accessible to the public. A PubChem BioAssay data entry includes an assay description, a summary and detailed test results. Each assay record is linked to the molecular target, whenever possible, and is cross-referenced to other National Center for Biotechnology Information (NCBI) database records. ‘Related BioAssays’ are identified by examining the assay target relationship and activity profile of commonly tested compounds. A key goal of PubChem BioAssay is to make the biological activity information easily accessible through the NCBI information retrieval system-Entrez, and various web-based PubChem services. An integrated suite of data analysis tools are available to optimize the utility of the chemical structure and biological activity information within PubChem, enabling researchers to aggregate, compare and analyze biological test results contributed by multiple organizations. In this work, we describe the PubChem BioAssay database, including data model, bioassay deposition and utilities that PubChem provides for searching, downloading and analyzing the biological activity information contained therein.


Nucleic Acids Research | 2015

Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data

Warren A. Kibbe; Cesar Arze; Victor Felix; Elvira Mitraka; Evan Bolton; Gang Fu; Christopher J. Mungall; Janos X. Binder; James Malone; Drashtti Vasant; Helen Parkinson; Lynn M. Schriml

The current version of the Human Disease Ontology (DO) (http://www.disease-ontology.org) database expands the utility of the ontology for the examination and comparison of genetic variation, phenotype, protein, drug and epitope data through the lens of human disease. DO is a biomedical resource of standardized common and rare disease concepts with stable identifiers organized by disease etiology. The content of DO has had 192 revisions since 2012, including the addition of 760 terms. Thirty-two percent of all terms now include definitions. DO has expanded the number and diversity of research communities and community members by 50+ during the past two years. These community members actively submit term requests, coordinate biomedical resource disease representation and provide expert curation guidance. Since the DO 2012 NAR paper, there have been hundreds of term requests and a steady increase in the number of DO listserv members, twitter followers and DO website usage. DO is moving to a multi-editor model utilizing Protégé to curate DO in web ontology language. This will enable closer collaboration with the Human Phenotype Ontology, EBIs Ontology Working Group, Mouse Genome Informatics and the Monarch Initiative among others, and enhance DOs current asserted view and multiple inferred views through reasoning.


Glycobiology | 2015

Symbol Nomenclature for Graphical Representations of Glycans

Ajit Varki; Richard D. Cummings; Markus Aebi; Nicole Packer; Peter H. Seeberger; Jeffrey D. Esko; Pamela Stanley; Gerald W. Hart; Alan G. Darvill; Taroh Kinoshita; James J. Prestegard; Ronald L. Schnaar; Hudson H. Freeze; Jamey D. Marth; Carolyn R. Bertozzi; Marilynn E. Etzler; Martin Frank; Johannes F.G. Vliegenthart; Thomas Lütteke; Serge Pérez; Evan Bolton; Pauline M. Rudd; James C. Paulson; Minoru Kanehisa; Philip V. Toukach; Kiyoko F. Aoki-Kinoshita; Anne Dell; Hisashi Narimatsu; William S. York; Naoyuki Taniguchi

Author(s): Varki, Ajit; Cummings, Richard D; Aebi, Markus; Packer, Nicole H; Seeberger, Peter H; Esko, Jeffrey D; Stanley, Pamela; Hart, Gerald; Darvill, Alan; Kinoshita, Taroh; Prestegard, James J; Schnaar, Ronald L; Freeze, Hudson H; Marth, Jamey D; Bertozzi, Carolyn R; Etzler, Marilynn E; Frank, Martin; Vliegenthart, Johannes Fg; Lutteke, Thomas; Perez, Serge; Bolton, Evan; Rudd, Pauline; Paulson, James; Kanehisa, Minoru; Toukach, Philip; Aoki-Kinoshita, Kiyoko F; Dell, Anne; Narimatsu, Hisashi; York, William; Taniguchi, Naoyuki; Kornfeld, Stuart


Journal of Cheminformatics | 2013

PubChem3D: conformer ensemble accuracy

Sunghwan Kim; Evan Bolton; Stephen H. Bryant

BackgroundPubChem is a free and publicly available resource containing substance descriptions and their associated biological activity information. PubChem3D is an extension to PubChem containing computationally-derived three-dimensional (3-D) structures of small molecules. All the tools and services that are a part of PubChem3D rely upon the quality of the 3-D conformer models. Construction of the conformer models currently available in PubChem3D involves a clustering stage to sample the conformational space spanned by the molecule. While this stage allows one to downsize the conformer models to more manageable size, it may result in a loss of the ability to reproduce experimentally determined “bioactive” conformations, for example, found for PDB ligands. This study examines the extent of this accuracy loss and considers its effect on the 3-D similarity analysis of molecules.ResultsThe conformer models consisting of up to 100,000 conformers per compound were generated for 47,123 small molecules whose structures were experimentally determined, and the conformers in each conformer model were clustered to reduce the size of the conformer model to a maximum of 500 conformers per molecule. The accuracy of the conformer models before and after clustering was evaluated using five different measures: root-mean-square distance (RMSD), shape-optimized shape-Tanimoto (STST-opt) and combo-Tanimoto (ComboTST-opt), and color-optimized color-Tanimoto (CTCT-opt) and combo-Tanimoto (ComboTCT-opt). On average, the effect of clustering decreased the conformer model accuracy, increasing the conformer ensemble’s RMSD to the bioactive conformer (by 0.18 ± 0.12 Å), and decreasing the STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt scores (by 0.04 ± 0.03, 0.16 ± 0.09, 0.09 ± 0.05, and 0.15 ± 0.09, respectively).ConclusionThis study shows the RMSD accuracy performance of the PubChem3D conformer models is operating as designed. In addition, the effect of PubChem3D sampling on 3-D similarity measures shows that there is a linear degradation of average accuracy with respect to molecular size and flexibility. Generally speaking, one can likely expect the worst-case minimum accuracy of 90% or more of the PubChem3D ensembles to be 0.75, 1.09, 0.43, and 1.13, in terms of STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt, respectively. This expected accuracy improves linearly as the molecule becomes smaller or less flexible.


Journal of Cheminformatics | 2009

The PubChem chemical structure sketcher.

Wolf-Dietrich Ihlenfeldt; Evan Bolton; Stephen H. Bryant

PubChem is an important public, Web-based information source for chemical and bioactivity information. In order to provide convenient structure search methods on compounds stored in this database, one mandatory component is a Web-based drawing tool for interactive sketching of chemical query structures. Web-enabled chemical structure sketchers are not new, being in existence for years; however, solutions available rely on complex technology like Java applets or platform-dependent plug-ins. Due to general policy and support incident rate considerations, Java-based or platform-specific sketchers cannot be deployed as a part of public NCBI Web services. Our solution: a chemical structure sketching tool based exclusively on CGI server processing, client-side JavaScript functions, and image sequence streaming. The PubChem structure editor does not require the presence of any specific runtime support libraries or browser configurations on the client. It is completely platform-independent and verified to work on all major Web browsers, including older ones without support for Web2.0 JavaScript objects.


Journal of Cheminformatics | 2015

PubChemRDF: towards the semantic annotation of PubChem compound and substance databases.

Gang Fu; Colin R. Batchelor; Michel Dumontier; Janna Hastings; Egon Willighagen; Evan Bolton

BackgroundPubChem is an open repository for chemical structures, biological activities and biomedical annotations. Semantic Web technologies are emerging as an increasingly important approach to distribute and integrate scientific data. Exposing PubChem data to Semantic Web services may help enable automated data integration and management, as well as facilitate interoperable web applications.DescriptionThis work, one of a series covering the PubChemRDF project, describes an approach to translate PubChem Substance and Compound information into Resource Description Framework (RDF) format. Basic examples are provided to demonstrate its use. The aim of this effort is to provide two new primary benefits to researchers in a cost-effective manner. Firstly, we aim to remove the inherent limitations of using the web-based resource PubChem by allowing a researcher to use readily available semantic technologies (namely, RDF triple stores and their corresponding SPARQL query engines) to query and analyze PubChem data on local computing resources. Secondly, this work intends to help improve data sharing, analysis, and integration of PubChem data to resources external to NCBI and across scientific domains, by means of the association of PubChem data to existing ontological frameworks, including CHEMical INFormation ontology, Semanticscience Integrated Ontology, and others.ConclusionsWith the goal of semantically describing information available in the PubChem archive, pre-existing ontological frameworks were used, rather than creating new ones. Semantic relationships between compounds and substances, chemical descriptors associated with compounds and substances, interrelationships between chemicals, as well as provenance and attribute metadata of substances are described.


Nucleic Acids Research | 2015

PUG-SOAP and PUG-REST: web services for programmatic access to chemical information in PubChem

Sunghwan Kim; Paul A. Thiessen; Evan Bolton; Stephen H. Bryant

PubChem (http://pubchem.ncbi.nlm.nih.gov) is a public repository for information on chemical substances and their biological activities, developed and maintained by the US National Institutes of Health (NIH). PubChem contains more than 180 million depositor-provided chemical substance descriptions, 60 million unique chemical structures and 225 million bioactivity assay results, covering more than 9000 unique protein target sequences. As an information resource for the chemical biology research community, it routinely receives more than 1 million requests per day from an estimated more than 1 million unique users per month. Programmatic access to this vast amount of data is provided by several different systems, including the US National Center for Biotechnology Information (NCBI)s Entrez Utilities (E-Utilities or E-Utils) and the PubChem Power User Gateway (PUG)—a common gateway interface (CGI) that exchanges data through eXtended Markup Language (XML). Further simplifying programmatic access, PubChem provides two additional general purpose web services: PUG-SOAP, which uses the simple object access protocol (SOAP) and PUG-REST, which is a Representational State Transfer (REST)-style interface. These interfaces can be harnessed in combination to access the data contained in PubChem, which is integrated with the more than thirty databases available within the NCBI Entrez system.

Collaboration


Dive into the Evan Bolton's collaboration.

Top Co-Authors

Avatar

Stephen H. Bryant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sunghwan Kim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gang Fu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Paul A. Thiessen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Benjamin A. Shoemaker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bo Yu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jiyao Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lianyi Han

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Volker Hähnke

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge