Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evan F. Lind is active.

Publication


Featured researches published by Evan F. Lind.


Nature | 2012

IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics

Masato Sasaki; Christiane B. Knobbe; Joshua Munger; Evan F. Lind; Dirk Brenner; Anne Brüstle; Isaac S. Harris; Roxanne Holmes; Andrew Wakeham; Jillian Haight; Annick You-Ten; Wanda Y. Li; Stefanie Schalm; Shinsan M. Su; Carl Virtanen; Guido Reifenberger; Pamela S. Ohashi; Dwayne L. Barber; Maria E. Figueroa; Ari Melnick; Juan Carlos Zúñiga-Pflücker; Tak W. Mak

Mutations in the IDH1 and IDH2 genes encoding isocitrate dehydrogenases are frequently found in human glioblastomas and cytogenetically normal acute myeloid leukaemias (AML). These alterations are gain-of-function mutations in that they drive the synthesis of the ‘oncometabolite’ R-2-hydroxyglutarate (2HG). It remains unclear how IDH1 and IDH2 mutations modify myeloid cell development and promote leukaemogenesis. Here we report the characterization of conditional knock-in (KI) mice in which the most common IDH1 mutation, IDH1(R132H), is inserted into the endogenous murine Idh1 locus and is expressed in all haematopoietic cells (Vav-KI mice) or specifically in cells of the myeloid lineage (LysM-KI mice). These mutants show increased numbers of early haematopoietic progenitors and develop splenomegaly and anaemia with extramedullary haematopoiesis, suggesting a dysfunctional bone marrow niche. Furthermore, LysM-KI cells have hypermethylated histones and changes to DNA methylation similar to those observed in human IDH1- or IDH2-mutant AML. To our knowledge, our study is the first to describe the generation and characterization of conditional IDH1(R132H)-KI mice, and also the first report to demonstrate the induction of a leukaemic DNA methylation signature in a mouse model. Our report thus sheds light on the mechanistic links between IDH1 mutation and human AML.


Journal of Experimental Medicine | 2009

Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo

Shintaro Kamizono; Gordon S. Duncan; Markus G. Seidel; Akira Morimoto; Koichi Hamada; Gerard Grosveld; Koichi Akashi; Evan F. Lind; Jillian Haight; Pamela S. Ohashi; A. Thomas Look; Tak W. Mak

Nuclear factor interleukin-3 (Nfil3; also known as E4-binding protein 4) is a basic region leucine zipper transcription factor that has antiapoptotic activity in vitro under conditions of growth factor withdrawal. To study the role of Nfil3 in vivo, we generated gene-targeted Nfil3-deficient (Nfil3−/−) mice. Nfil3−/− mice were born at normal Mendelian frequency and were grossly normal and fertile. Although numbers of T cells, B cells, and natural killer (NK) T cells were normal in Nfil3−/− mice, a specific disruption in NK cell development resulted in severely reduced numbers of mature NK cells in the periphery. This defect was NK cell intrinsic in nature, leading to a failure to reject MHC class I–deficient cells in vivo and reductions in both interferon γ production and cytolytic activity in vitro. Our results confirm the specific and essential requirement of Nfil3 for the development of cells of the NK lineage.


Oncogene | 2012

The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk.

Enrico Arpaia; H Blaser; M Quintela-Fandino; Gordon S. Duncan; H S Leong; A Ablack; S C Nambiar; Evan F. Lind; Jennifer Silvester; C K Fleming; Alessandro Rufini; M W Tusche; Anne Brüstle; Pamela S. Ohashi; J D Lewis; Tak W. Mak

Proteins containing a caveolin-binding domain (CBD), such as the Rho-GTPases, can interact with caveolin-1 (Cav1) through its caveolin scaffold domain. Rho-GTPases are important regulators of p130Cas, which is crucial for both normal cell migration and Src kinase-mediated metastasis of cancer cells. However, although Rho-GTPases (particularly RhoC) and Cav1 have been linked to cancer progression and metastasis, the underlying molecular mechanisms are largely unknown. To investigate the function of Cav1–Rho-GTPase interaction in metastasis, we disrupted Cav1–Rho-GTPase binding in melanoma and mammary epithelial tumor cells by overexpressing CBD, and examined the loss-of-function of RhoC in metastatic cancer cells. Cancer cells overexpressing CBD or lacking RhoC had reduced p130Cas phosphorylation and Rac1 activation, resulting in an inhibition of migration and invasion in vitro. The activity of Src and the activation of its downstream targets FAK, Pyk2, Ras and extracellular signal-regulated kinase (Erk)1/2 were also impaired. A reduction in α5-integrin expression, which is required for binding to fibronectin and thus cell migration and survival, was observed in CBD-expressing cells and cells lacking RhoC. As a result of these defects, CBD-expressing melanoma cells had a reduced ability to metastasize in recipient mice, and impaired extravasation and survival in secondary sites in chicken embryos. Our data indicate that interaction between Cav1 and Rho-GTPases (most likely RhoC but not RhoA) promotes metastasis by stimulating α5-integrin expression and regulating the Src-dependent activation of p130Cas/Rac1, FAK/Pyk2 and Ras/Erk1/2 signaling cascades.


European Journal of Immunology | 2014

Mir‐155, a central modulator of T‐cell responses

Evan F. Lind; Pamela S. Ohashi

The activation of T cells is a tightly regulated process that has evolved to maximize protective immune responses to pathogens while minimizing damage to self‐tissues. A delicate balance of cell‐intrinsic, costimulatory, and transcriptional pathways as well as micro‐environmental cues such as local cytokines controls the magnitude and nature of T‐cell responses in vivo. The discovery of functional small noncoding RNAs called micro‐RNAs (miRNAs) has introduced new mechanisms that contribute to the regulation of protein translation and cellular responses to stimuli. miRNAs are short (approximately 22 bp) RNA species, which bind to mRNAs and suppress translation. Due to their short length and imperfect base pairing requirements, each miRNA has the potential to regulate various pathways through the translational inhibition of multiple mRNAs. The human and mouse genomes each encode hundreds of miRNAs, and studying the function of miRNAs has led to the realization that they play important roles in diverse biological processes from development and cancer to immunity. This review focuses on the function of mir‐155 in T cells and the impact of this miRNA on autoimmunity, tumor immunity, and pathogen‐induced immunity.


Proceedings of the National Academy of Sciences of the United States of America | 2010

HUNK suppresses metastasis of basal type breast cancers by disrupting the interaction between PP2A and cofilin-1

Miguel Quintela-Fandino; Enrico Arpaia; Dirk Brenner; Theo Goh; Faith Au Yeung; Heiko Blaser; Roumiana Alexandrova; Evan F. Lind; Mike W. Tusche; Andrew Wakeham; Pamela S. Ohashi; Tak W. Mak

Metastasis leads to the death of most cancer patients, and basal breast cancer is the most aggressive breast tumor type. Metastasis involves a complex cell migration process dependent on cytoskeletal remodeling such that targeting such remodeling in tumor cells could be clinically beneficial. Here we show that Hormonally Up-regulated Neu-associated Kinase (HUNK) is dramatically down-regulated in tumor samples and cell lines derived from basal breast cancers. Reconstitution of HUNK expression in basal breast cancer cell lines blocked actin polymerization and reduced cell motility, resulting in decreased metastases in two in vivo murine cancer models. Mechanistically, HUNK overexpression sustained the constitutive phosphorylation and inactivation of cofilin-1 (CFL-1), thereby blocking the incorporation of new actin monomers into actin filaments. HUNK reconstitution in basal breast cancer cell lines prevented protein phosphatase 2-A (PP2A), a phosphatase putatively acting on CFL-1, from binding to CFL-1. Our investigation of HUNK suggests that the interaction between PP2A and CFL-1 may be a target for antimetastasis therapy, particularly for basal breast cancers.


PLOS ONE | 2012

Dysregulation of cell polarity proteins synergize with oncogenes or the microenvironment to induce invasive behavior in epithelial cells.

Samit Chatterjee; Laurie Seifried; Michael E. Feigin; Don L. Gibbons; Claudio Scuoppo; Wei Lin; Zain H. Rizvi; Evan F. Lind; Dilan Dissanayake; Jonathan M. Kurie; Pam Ohashi; Senthil K. Muthuswamy

Changes in expression and localization of proteins that regulate cell and tissue polarity are frequently observed in carcinoma. However, the mechanisms by which changes in cell polarity proteins regulate carcinoma progression are not well understood. Here, we report that loss of polarity protein expression in epithelial cells primes them for cooperation with oncogenes or changes in tissue microenvironment to promote invasive behavior. Activation of ErbB2 in cells lacking the polarity regulators Scribble, Dlg1 or AF-6, induced invasive properties. This cooperation required the ability of ErbB2 to regulate the Par6/aPKC polarity complex. Inhibition of the ErbB2-Par6 pathway was sufficient to block ErbB2-induced invasion suggesting that two polarity hits may be needed for ErbB2 to promote invasion. Interestingly, in the absence of ErbB2 activation, either a combined loss of two polarity proteins, or exposure of cells lacking one polarity protein to cytokines IL-6 or TNFα induced invasive behavior in epithelial cells. We observed the invasive behavior only when cells were plated on a stiff matrix (Matrigel/Collagen-1) and not when plated on a soft matrix (Matrigel alone). Cells lacking two polarity proteins upregulated expression of EGFR and activated Akt. Inhibition of Akt activity blocked the invasive behavior identifying a mechanism by which loss of polarity promotes invasion of epithelial cells. Thus, we demonstrate that loss of polarity proteins confers phenotypic plasticity to epithelial cells such that they display normal behavior under normal culture conditions but display aggressive behavior in response to activation of oncogenes or exposure to cytokines.


Journal of Immunology | 2015

miR-155 Upregulation in Dendritic Cells Is Sufficient To Break Tolerance In Vivo by Negatively Regulating SHIP1.

Evan F. Lind; Douglas G. Millar; Dilan Dissanayake; Jonathan C. Savage; Natasha K. Grimshaw; William G. Kerr; Pamela S. Ohashi

TLR-induced maturation of dendritic cells (DCs) leads to the production of proinflammatory cytokines as well as the upregulation of various molecules involved in T cell activation. These are believed to be the critical events that account for the induction of the adaptive immune response. In this study, we have examined the role of miR-155 in DC function and the induction of immunity. Using a model in which the transfer of self-Ag–pulsed, TLR-matured DCs can induce a functional CD8 T cell response and autoimmunity, we find that DCs lacking miR-155 have an impaired ability to break immune tolerance. Importantly, transfer of self- Ag-pulsed DCs overexpressing miR-155 was sufficient to break tolerance in the absence of TLR stimuli. Although these unstimulated DCs induced T cell function in vivo, there was no evidence for the upregulation of costimulatory ligands or cytokine secretion. Further analysis showed that miR-155 influenced the level of the phosphatase SHIP1 in DCs and that the lack of SHIP1 in DCs was sufficient to break T cell tolerance in vivo, again in the absence of TLR-induced DC maturation. Our study demonstrates that the overexpression of miR-155 in DCs is a critical event that is alone sufficient to break self-tolerance and promote a CD8-mediated autoimmune response in vivo. This process is independent of the induction of conventional DC maturation markers, indicating that miR-155 regulation of SHIP represents a unique axis that regulates DC function in vivo.


Frontiers in Oncology | 2018

Targeting the immune microenvironment in acute myeloid leukemia: A focus on T cell immunity

Adam J. Lamble; Evan F. Lind

Immunotherapies, such as chimeric antigen receptor T cells, bispecific antibodies, and immune checkpoint inhibitors, have emerged as promising modalities in multiple hematologic malignancies. Despite the excitement surrounding immunotherapy, it is currently not possible to predict which patients will respond. Within solid tumors, the status of the immune microenvironment provides valuable insight regarding potential responses to immune therapies. Much less is known about the immune microenvironment within hematologic malignancies but the characteristics of this environment are likely to serve a similar predictive role. Acute myeloid leukemia (AML) is the most common hematologic malignancy in adults, and only 25% of patients are alive 5 years following their diagnosis. There is evidence that manipulation of the immune microenvironment by leukemia cells may play a role in promoting therapy resistance and disease relapse. In addition, it has long been documented that through modulation of the immune system following allogeneic bone marrow transplant, AML can be cured, even in patients with the highest risk disease. These concepts, along with the poor prognosis associated with this disease, have encouraged many groups to start exploring the utility of novel immune therapies in AML. While the implementation of these therapies into clinical trials for AML has been supported by preclinical rationale, many questions still exist surrounding their efficacy, tolerability, and the overall optimal approach. In this review, we discuss what is known about the immune microenvironment within AML with a specific focus on T cells and checkpoints, along with their implications for immune therapies.


Cell Reports | 2018

Timed Regulation of 3BP2 Induction Is Critical for Sustaining CD8+ T Cell Expansion and Differentiation

Ioannis D. Dimitriou; Korris Lee; Itoro Akpan; Evan F. Lind; Valarie A. Barr; Pamela S. Ohashi; Lawrence E. Samelson; Robert Rottapel

SUMMARY Successful anti-viral response requires the sustained activation and expansion of CD8+ T cells for periods that far exceed the time limit of physical T cell interaction with antigen-presenting cells (APCs). The expanding CD8+ T cell pool generates the effector and memory cell populations that provide viral clearance and long-term immunity, respectively. Here, we demonstrate that 3BP2 is recruited in cytoplasmic microclusters and nucleates a signaling complex that facilitates MHC:peptide-independent activation of signaling pathways downstream of the TCR. We show that induction of the adaptor molecule 3BP2 is a sensor of TCR signal strength and is critical for sustaining CD8+ T cell proliferation and regulating effector and memory differentiation.


Journal of Immunological Methods | 2017

Integrated functional and mass spectrometry-based flow cytometric phenotyping to describe the immune microenvironment in acute myeloid leukemia

Adam Lamble; Matthew Dietz; Ted Laderas; Shannon McWeeney; Evan F. Lind

A hallmark of the development of cancer is its ability to avoid detection and elimination by the immune system. There are many identified mechanisms of this immune evasion that can be measured both phenotypically and functionally. Functional studies directly show the ability of the tumor microenvironment to suppress immune responses, typically measured as lymphocyte proliferation, cytokine production or killing ability. While a direct measurement of function is ideal, these assays require ex vivo activation which may not accurately mimic in vivo conditions. Phenotypic assays can directly measure the distribution and activation of immune cell types rapidly after isolation, preserving the conditions present in the patient. While conventional flow cytometry is a rapid and well established assay, it currently allows for measurement of only 12-14 parameters. Mass spectrometry-based flow cytometry, or CyTOF, offers the ability to measure 3-fold more parameters than conventional optical-based modalities providing an advantage in depth of analysis that can be crucial for precious human samples. The goal of this report is to describe the system our group has developed to measure both the phenotype and function of immune cells in the bone marrow of patients with acute myeloid leukemia. We hope to explain our system in the context of previous studies aimed at measuring immune status in tumors and to inform the reader as to some experimental approaches our group has found useful in developing the basic data required to rationally pursue immune-based therapies for patients with cancer.

Collaboration


Dive into the Evan F. Lind's collaboration.

Top Co-Authors

Avatar

Pamela S. Ohashi

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Huang

Janssen Pharmaceutica

View shared research outputs
Researchain Logo
Decentralizing Knowledge