Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evan W. Christen is active.

Publication


Featured researches published by Evan W. Christen.


Journal of Hazardous Materials | 2009

A review of the fate of potassium in the soil–plant system after land application of wastewaters

Michele Arienzo; Evan W. Christen; Wendy C. Quayle; Anu Kumar

Irrigation with wastewaters from agri-industry processes such as milk factories, piggeries, wineries and abattoirs is commonplace. These wastewaters all have high levels of potassium (K). Potassium concentration in effluents from domestic wastewater sources are relatively low, reported to vary between 10 and 30 mg L(-1). Higher levels of potassium are reported for effluents from olive oil mills, 10,000-20,000 mg KL(-1), wool scouring, 4200-13,000 mg KL(-1), cheese and lactic whey and potato processing, approximately 1800 mg KL(-1), piggery effluent, 500-1000 mg KL(-1) and winery wastewaters, up to 1000 mg KL(-1). Application of wastewaters with these high potassium levels has been found to increase the overall level of soil fertility, with the exception of alkaline effluents which can dissolve soil organic carbon. Long-term application of such wastewater may cause the build-up of soil potassium and decrease the hydraulic conductivity of the receiving soils. These potential impacts are uncertain and have been inadequately researched. Regulatory limits for potassium in drinking water have been set only by the European Union with no toxicological or physiological justification. The literature shows that grasses and legume herbages accumulate high levels of potassium, up to 5% dry weight, and some grasses, such as turfgrass are particularly tolerant to high levels of potassium, even under saline conditions. This adaptation is considered useful for increasing potassium immobilization and sustainable practices of land wastewater disposal. Potassium availability is significantly affected by the cation ratios of the wastewater, the existing soil water solution and of soil exchange sites.


Irrigation Science | 2006

The resource potential of in-situ shallow ground water use in irrigated agriculture: a review

James E. Ayars; Evan W. Christen; R. W. Soppe; W. S. Meyer

Shallow ground water is a resource that is routinely overlooked when water management alternatives are being considered in irrigated agriculture. Even though it has the potential to provide significant quantities of water for crop use under the proper conditions and management. Crop water use from shallow groundwater is affected by soil water flux, crop rooting characteristics, crop salt tolerance, presence of a drainage system, and irrigation system type and management. This paper reviews these factors in detail and presents data quantifying crop use from shallow ground, and describes the existing state of the art with regard to crop management in the presence of shallow ground water. The existing data are used to determine whether in-situ crop water use from shallow ground water is suitable for a given situation. The suggested methodology uses ratios of ground water electrical conductivity to the Maas–Hoffman yield loss threshold values, the day to plant maturity relative to plant growth period, and the maximum rooting depth relative to the nearly saturated zone. The review demonstrates that for in-situ use to be feasible there has to be good quality ground water relative to crop salt tolerance available for an extended period of time. Shallow ground water availability is one area that can be managed to some extent. Crop selection will be the primary determinant in the other ratios.


Journal of Hazardous Materials | 2009

Phytotoxicity testing of winery wastewater for constructed wetland treatment

Michele Arienzo; Evan W. Christen; Wendy C. Quayle

Rapid and inexpensive phytotoxicity bioassays for winery wastewater (WW) are important when designing winery wastewater treatment systems involving constructed wetlands. Three macrophyte wetland species (Phragmites australis, Schoenoplectus validus and Juncus ingens) were tested using a pot experiment simulating a wetland microcosm. The winery wastewater concentration was varied (0.5%, 5%, 10%, 25%, 50%, 75% and 100%) and pH was corrected for some concentrations using lime as an amendment. The tolerance of the three aquatic macrophytes species to winery wastewater was studied through biomass production, total chlorophyll and nitrogen, phosphorous and potassium tissue concentrations. The results showed that at greater than 25% wastewater concentration all the macrophytes died and that Phragmites was the least hardy species. At less than 25% wastewater concentration the wetland microcosms were effective in reducing chemical oxygen demand, phenols and total soluble solids. We also evaluated the performance of two laboratory phytotoxicity assays; (1) Garden Cress (Lepidium sativum), and (2) Onion (Allium coepa). The results of these tests revealed that the effluent was highly toxic with effective concentration, EC(50), inhibition values, as low as 0.25%. Liming the WW increased the EC(50) by 10 fold. Comparing the cress and onion bioassays with the wetland microcosm results indicated that the thresholds for toxicity were of the same order of magnitude. As such we suggest that the onion and cress bioassays could be effectively used in the wine industry for rapid wastewater toxicity assessment.


Irrigation Science | 2001

Subsurface drainage design and management in irrigated areas of Australia

Evan W. Christen; James E. Ayars; John Hornbuckle

Abstract. Subsurface drainage to protect irrigated cropping has been practised in some areas of Australia since the 1920s, and most irrigation districts have large land areas protected by some form of subsurface drainage. Across the irrigated areas, a broad spectrum of practices were developed that suited the conditions at the time of development. This paper assesses the performance of these subsurface drainage systems in terms of long-term sustainability of irrigated agriculture, based on the results of a detailed review of all the subsurface drainage systems in use in Australian irrigation areas. The long-term sustainability of irrigated agriculture depends upon controlling the salinity levels in the crop root zone and maintaining the ability to dispose of drainage water. This requires that subsurface drainage systems are efficient in terms of removing the minimum amount of water with the lowest salinity possible, given the existing conditions, while still maintaining crop productivity. Analysis of the current drainage system operation showed that many systems were draining greater volumes of water than designed for, leading to excessively high leaching fractions, and reduced irrigation water-use efficiency. The salt load removed by these systems was also often found to be far greater than the salt applied by irrigation, indicating a mining of stored salt. This is necessary from a salinised root zone but not if the salt is from below the root zone. The extra salt load above that required to maintain a salt balance in the root zone leads to increased difficulties in the disposal of the drainage water due to downstream impacts. Suggestions are discussed for adaptive management and new design considerations that may help make subsurface drainage more efficient, leading to reduced negative downstream effects and reduced costs of disposal.


Journal of Hazardous Materials | 2012

Physicochemical and microbiological effects of long- and short-term winery wastewater application to soils

Kim Patricia May Mosse; Antonio F. Patti; Ronald J. Smernik; Evan W. Christen; Timothy R. Cavagnaro

Application of winery wastewaters to soils for irrigation of various crops or landscapes is a common practice in the wine industry. In this study, we sought to investigate the effects of this practice, by comparing the physicochemical and microbiological soil properties in paired sites that differed in having had a history of winery waste application or not. We also compared the effects of a single application of untreated winery wastewater, to application of treated winery wastewater (sequencing batch reactor) and pure water to eliminate the effects of wetting alone. Long-term application of winery wastes was found to have significant impacts on soil microbial community structure, as determined by phospholipid fatty acid analysis, as well as on many physicochemical properties including pH, EC, and cation concentrations. (13)C NMR revealed only slight differences in the nature of the carbon present at each of the paired sites. A single application of untreated winery wastewater was shown to have significant impacts upon soil respiration, nitrogen cycling and microbial community structure, but the treated wastewater application showed no significant differences to wetting alone. Results are discussed in the context of sustainable winery wastewater disposal.


Journal of Hazardous Materials | 2010

Winery wastewater inhibits seed germination and vegetative growth of common crop species.

Kim Patricia May Mosse; Antonio F. Patti; Evan W. Christen; Timothy R. Cavagnaro

The ability to reuse winery wastewater would be of significant benefit to the wine industry, as it could potentially be a cost-effective method of wastewater management, whilst at the same time providing a valuable water resource. This study investigated the effects of different dilutions of a semi-synthetic winery wastewater on the growth and germination of four common crop species in a glasshouse study; barley (Hordeum vulgare), millet (Pennisetum glaucum), lucerne (Medicago sativa) and phalaris (Phalaris aquatica). The wastewater caused a significant delay in the germination of lucerne, millet and phalaris, although overall germination percentage of all species was not affected. Vegetative growth was significantly reduced in all species, with millet being the most severely affected. The germination index of barley correlated very highly (r(2)=0.99) with barley biomass, indicating that barley seed germination bioassays are highly relevant to plant growth, and therefore may be of use as a bioassay for winery wastewater toxicity.


Journal of Environmental Management | 2010

Winery wastewater treatment using the land filter technique

Evan W. Christen; Wendy C. Quayle; M. A. Marcoux; Michele Arienzo; N. S. Jayawardane

This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation.


Soil Research | 2011

Evaluation of the effects of cation combinations on soil hydraulic conductivity

N. S. Jayawardane; Evan W. Christen; Michele Arienzo; Wendy C. Quayle

Effects of soil solution cation concentrations and ratios on hydraulic properties must be understood in order to model soil water flow in reactive soils or develop guidelines for sustainable land application of wastewater. We examined effects of different ratios and concentrations of the cations Ca2+, Mg2+, Na+, and K+, using hydraulic conductivity measurements in repacked soil cores, as an indicator of soil structural stability. We examined widely used indices—sodium, potassium, and monovalent cation absorption ratios (SAR, PAR, MCAR)—which assume that the flocculating effects of Ca2+ and Mg2+ are the same, and the dispersive effects of Na+ and K+ are the same. Our laboratory measurements indicate that at any given values of MCAR, the reductions in soil hydraulic conductivity with decrease in electrolyte concentration are not identical for different cation combinations in solution. The hydraulic conductivity curves showed a marked lateral shifting for both the surface and subsurface soils from a winery wastewater application site. This indicates that MCAR is inadequate as a soil stability parameter in soil solutions containing a mixture of Na+, K+, Ca2+, and Mg2+. We employed an unpublished equation that was proposed by P. Rengasamy as a modified index of soil stability for mixed cation combinations, using calculated relative flocculating powers of different cations (‘CROSS’, cation ratio of structural stability). Our observation of lateral shift in hydraulic conductivity measurements at any value of MCAR appears to relate to changes in CROSS values for all cation combinations tested, except for K–Mg solutions, for which a more generalised CROSS equation with modified parameters seems more suitable for calculating the CROSS value. Appropriate modified parameters for use in this generalised CROSS equation were determined empirically, using the experimental data. We derived a combination of threshold electrolyte concentration and CROSS values required to maintain high hydraulic conductivity for the soils at a winery wastewater application site. The potential use of this relationship in developing management practices for sustainable wastewater management at the site is discussed. Further research on the applicability of CROSS and generalised CROSS equations for other soils in the presence of different mixed cation combinations is needed.


Water Environment Research | 2009

Development of a low-cost wastewater treatment system for small-scale wineries.

Michele Arienzo; Evan W. Christen; Wendy C. Quayle; Nicola Di Stefano

A pilot-scale winery wastewater treatment system was developed to treat wastewater produced by a small winery (approximately 1200 metric tons of grapes crushed). The pilot system consisted of a sedimentation/aerobic process combined with a bioremediation wastewater cell planted with Juncus ingens. The main design specifications, detailed descriptions of the plant, and analysis of the influent and effluent characteristics (pH, electrical conductivity, total suspended solids, chemical oxygen demand [COD], etc.) are reported for each segment of the system. Over the study period, the mean winery wastewater flowrate was 3.5 m3/d at organic loads of 5000 to 14 000 mg-COD/L. The study measured average removal rates of 72% for COD and 65% for total organic carbon and dissolved carbon. The application of wastewater to the soil increased the soil salinity in the top 30 cm, but remained stable below this. The system also seemed to be effective at neutralizing the pH of the acidic winery wastewater and at removing the phosphorus pool (65%) in the wastewater, whereas the levels of nitrogen and most of the cations increased in the treated effluent. The absorbing/adsorbing and degradation capacity of the soil of the wastewater bioremediation cell did not appear to be exhausted after one vintage. Juncus ingens appeared to grow moderately well, until the end of the vintage, when dieback began to occur. An infilling with organic matter of the surface soil layer under the root zone was observed, which reduced water infiltration and hence system treatment capacity. The data provide evidence that this is a potentially effective wastewater treatment approach for small wineries located in rural areas.


Water Science and Technology | 2009

Evaluation of organic matter concentration in winery wastewater: a case study from Australia.

Wendy C. Quayle; Alison Fattore; Roy Zandona; Evan W. Christen; Michele Arienzo

The 5-day biological oxygen demand (BOD(5)) remains a key indicator for proof of compliance with environmental regulators in the monitoring and management of winery effluent. Inter-conversion factors from alternative tests that are more rapid, accurate and simpler to perform have been determined that allow prediction of BOD(5) in winery wastewaters, generally, and at different stages of production and treatment. Mean values obtained from this dataset offer rule of thumb inter-conversion factors: BOD(5) = 0.7 Chemical Oxygen Demand (COD), BOD(5) = 2.3 Total Organic Carbon (TOC) and BOD(5) = 2.7 Dissolved Organic Carbon (DOC). Specific predictive linear relationships are also provided. Out of the relationships between BOD(5) vs COD, TOC and DOC, in winery wastewater, irrespective of vintage or non-vintage production periods and stage of treatment, TOC offered the most reliable prediction of BOD(5). Ethanol, glucose and fructose were evaluated in untreated wastewater as predictors of BOD(5) due to their high specificity in winery effluent. A significant relationship was determined between BOD(5) and (ethanol + glucose + fructose; R(2) = 0.64, n = 19; p<0.05), but relationships between BOD(5) and ethanol and BOD(5) vs (glucose + fructose) were weak (R(2) = 0.45 and 0.34; n = 19; p<0.05 respectively,). There was a very strong linear correlation (y = 0.9767x + 52.8; R(2) = 0.97; n = 23; p<0.05) in COD data in winery effluents when using a commercially available mercury free test kit compared with using a traditional COD test kit that contained mercury. This suggests that mercury free COD test kits could be used by the wine industry for organic pollution assessment with associated reductions to user and environmental risk, as well as reducing the costs of kit waste disposal.

Collaboration


Dive into the Evan W. Christen's collaboration.

Top Co-Authors

Avatar

Wendy C. Quayle

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Michele Arienzo

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

John Hornbuckle

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

James E. Ayars

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Ian Jolly

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

John Blackwell

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge