Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evan W. Miller is active.

Publication


Featured researches published by Evan W. Miller.


Journal of the American Chemical Society | 2008

An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells.

Duangkhae Srikun; Evan W. Miller; Dylan W. Domaille; Christopher J. Chang

We present the synthesis, properties, and biological applications of Peroxy Lucifer 1 (PL1), a new fluorescent probe for imaging hydrogen peroxide produced in living cells by a ratiometric response. PL1 utilizes a chemoselective boronate-based switch to detect hydrogen peroxide by modulation of internal charge transfer (ICT) within a 1,8-naphthalimide dye. PL1 features high selectivity for hydrogen peroxide over similar reactive oxygen species, including superoxide, and nitric oxide, and a 65 nm shift in emission from blue-colored fluorescence to green-colored fluorescence upon reaction with peroxide. Two-photon confocal microscopy experiments in live macrophages show that PL1 can ratiometrically visualize localized hydrogen peroxide bursts generated in living cells at immune response levels.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling

Evan W. Miller; Bryan C. Dickinson; Christopher J. Chang

Hydrogen peroxide (H2O2) produced by cell-surface NADPH Oxidase (Nox) enzymes is emerging as an important signaling molecule for growth, differentiation, and migration processes. However, how cells spatially regulate H2O2 to achieve physiological redox signaling over nonspecific oxidative stress pathways is insufficiently understood. Here we report that the water channel Aquaporin-3 (AQP3) can facilitate the uptake of H2O2 into mammalian cells and mediate downstream intracellular signaling. Molecular imaging with Peroxy Yellow 1 Methyl-Ester (PY1-ME), a new chemoselective fluorescent indicator for H2O2, directly demonstrates that aquaporin isoforms AQP3 and AQP8, but not AQP1, can promote uptake of H2O2 specifically through membranes in mammalian cells. Moreover, we show that intracellular H2O2 accumulation can be modulated up or down based on endogenous AQP3 expression, which in turn can influence downstream cell signaling cascades. Finally, we establish that AQP3 is required for Nox-derived H2O2 signaling upon growth factor stimulation. Taken together, our findings demonstrate that the downstream intracellular effects of H2O2 can be regulated across biological barriers, a discovery that has broad implications for the controlled use of this potentially toxic small molecule for beneficial physiological functions.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires

Evan W. Miller; John Y. Lin; E. Paxon Frady; Paul Steinbach; William B. Kristan; Roger Y. Tsien

Fluorescence imaging is an attractive method for monitoring neuronal activity. A key challenge for optically monitoring voltage is development of sensors that can give large and fast responses to changes in transmembrane potential. We now present fluorescent sensors that detect voltage changes in neurons by modulation of photo-induced electron transfer (PeT) from an electron donor through a synthetic molecular wire to a fluorophore. These dyes give bigger responses to voltage than electrochromic dyes, yet have much faster kinetics and much less added capacitance than existing sensors based on hydrophobic anions or voltage-sensitive ion channels. These features enable single-trial detection of synaptic and action potentials in cultured hippocampal neurons and intact leech ganglia. Voltage-dependent PeT should be amenable to much further optimization, but the existing probes are already valuable indicators of neuronal activity.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy

Sheel C. Dodani; Dylan W. Domaille; Christine I. Nam; Evan W. Miller; Lydia Finney; Stefan Vogt; Christopher J. Chang

Dynamic fluxes of s-block metals like potassium, sodium, and calcium are of broad importance in cell signaling. In contrast, the concept of mobile transition metals triggered by cell activation remains insufficiently explored, in large part because metals like copper and iron are typically studied as static cellular nutrients and there are a lack of direct, selective methods for monitoring their distributions in living cells. To help meet this need, we now report Coppersensor-3 (CS3), a bright small-molecule fluorescent probe that offers the unique capability to image labile copper pools in living cells at endogenous, basal levels. We use this chemical tool in conjunction with synchotron-based microprobe X-ray fluorescence microscopy (XRFM) to discover that neuronal cells move significant pools of copper from their cell bodies to peripheral processes upon their activation. Moreover, further CS3 and XRFM imaging experiments show that these dynamic copper redistributions are dependent on calcium release, establishing a link between mobile copper and major cell signaling pathways. By providing a small-molecule fluorophore that is selective and sensitive enough to image labile copper pools in living cells under basal conditions, CS3 opens opportunities for discovering and elucidating functions of copper in living systems.


Nature Protocols | 2006

Preparation and use of Coppersensor-1, a synthetic fluorophore for live-cell copper imaging

Evan W. Miller; Li Zeng; Dylan W. Domaille; Christopher J. Chang

Coppersensor-1 (CS1) is a small-molecule, membrane-permeable fluorescent dye for imaging labile copper pools in biological samples, including live cells. This probe, comprising a boron dipyrromethene (BODIPY) chromophore coupled to a thioether-rich receptor, has a picomolar affinity for Cu+ with high selectivity over competing cellular metal ions. CS1 fluorescence increases up to 10-fold on binding to Cu+. In this protocol we describe the synthesis of CS1 and how to use this chemical tool to investigate intracellular levels of labile copper in cultured cells. The preparation of CS1 is anticipated to take 4–5 d, and imaging assays can be performed in 1–2 d with cultured cells.


The Journal of Neuroscience | 2009

Mitochondria Are the Source of Hydrogen Peroxide for Dynamic Brain-Cell Signaling

Li Bao; Marat V. Avshalumov; Jyoti C. Patel; Christian R. Lee; Evan W. Miller; Christopher J. Chang; Margaret E. Rice

Hydrogen peroxide (H2O2) is emerging as a ubiquitous small-molecule messenger in biology, particularly in the brain, but underlying mechanisms of peroxide signaling remain an open frontier for study. For example, dynamic dopamine transmission in dorsolateral striatum is regulated on a subsecond timescale by glutamate via H2O2 signaling, which activates ATP-sensitive potassium (KATP) channels to inhibit dopamine release. However, the origin of this modulatory H2O2 has been elusive. Here we addressed three possible sources of H2O2 produced for rapid neuronal signaling in striatum: mitochondrial respiration, monoamine oxidase (MAO), and NADPH oxidase (Nox). Evoked dopamine release in guinea-pig striatal slices was monitored with carbon-fiber microelectrodes and fast-scan cyclic voltammetry. Using direct fluorescence imaging of H2O2 and tissue analysis of ATP, we found that coapplication of rotenone (50 nm), a mitochondrial complex I inhibitor, and succinate (5 mm), a complex II substrate, limited H2O2 production, but maintained tissue ATP content. Strikingly, coapplication of rotenone and succinate also prevented glutamate-dependent regulation of dopamine release, implicating mitochondrial H2O2 in release modulation. In contrast, inhibitors of MAO or Nox had no effect on dopamine release, suggesting a limited role for these metabolic enzymes in rapid H2O2 production in the striatum. These data provide the first demonstration that respiring mitochondria are the primary source of H2O2 generation for dynamic neuronal signaling.


Bioorganic & Medicinal Chemistry Letters | 2008

A Red-Emitting Naphthofluorescein-Based Fluorescent Probe for Selective Detection of Hydrogen Peroxide in Living Cells

Aaron E. Albers; Bryan C. Dickinson; Evan W. Miller; Christopher J. Chang

We report the synthesis, properties, and cellular application of Naphtho-Peroxyfluor-1 (NPF1), a new fluorescent indicator for hydrogen peroxide based on a red-emitting naphthofluorescein platform. Owing to its boronate cages, NPF1 features high selectivity for hydrogen peroxide over a panel of biologically relevant reactive oxygen species (ROS), including superoxide and nitric oxide, as well as excitation and emission profiles in the far-red region of the visible spectrum (>600nm). Flow cytometry experiments in RAW264.7 macrophages establish that NPF1 can report changes in peroxide levels in living cells.


Journal of the American Chemical Society | 2015

Improved PeT Molecules for Optically Sensing Voltage in Neurons

Clifford R. Woodford; E. Paxon Frady; Richard S. Smith; Benjamin Morey; Gabriele Canzi; Sakina F. Palida; Ricardo C. Araneda; William B. Kristan; Clifford P. Kubiak; Evan W. Miller; Roger Y. Tsien

VoltageFluor (VF) dyes have the potential to measure voltage optically in excitable membranes with a combination of high spatial and temporal resolution essential to better characterize the voltage dynamics of large groups of excitable cells. VF dyes sense voltage with high speed and sensitivity using photoinduced electron transfer (PeT) through a conjugated molecular wire. We show that tuning the driving force for PeT (ΔGPeT + w) through systematic chemical substitution modulates voltage sensitivity, estimate (ΔGPeT + w) values from experimentally measured redox potentials, and validate the voltage sensitivities in patch-clamped HEK cells for 10 new VF dyes. VF2.1(OMe).H, with a 48% ΔF/F per 100 mV, shows approximately 2-fold improvement over previous dyes in HEK cells, dissociated rat cortical neurons, and medicinal leech ganglia. Additionally, VF2.1(OMe).H faithfully reports pharmacological effects and circuit activity in mouse olfactory bulb slices, thus opening a wide range of previously inaccessible applications for voltage-sensitive dyes.


Environmental Health Perspectives | 2010

An integrated imaging approach to the study of oxidative stress generation by mitochondrial dysfunction in living cells.

Wan Yun Cheng; Haiyan Tong; Evan W. Miller; Christopher J. Chang; James S. Remington; Robert M. Zucker; Philip A. Bromberg; James M. Samet; Thomas P J Hofer

Background The mechanisms of action of many environmental agents commonly involve oxidative stress resulting from mitochondrial dysfunction. Zinc is a common environmental metallic contaminant that has been implicated in a variety of oxidant-dependent toxicological responses. Unlike ions of other transition metals such as iron, copper, and vanadium, Zn2+ does not generate reactive oxygen species (ROS) through redox cycling. Objective To characterize the role of oxidative stress in zinc-induced toxicity. Methods We used an integrated imaging approach that employs the hydrogen peroxide (H2O2)-specific fluorophore Peroxy Green 1 (PG1), the mitochondrial potential sensor 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1), and the mitochondria-targeted form of the redox-sensitive genetically encoded fluorophore MTroGFP1 in living cells. Results Zinc treatment in the presence of the Zn2+ ionophore pyrithione of A431 skin carcinoma cells preloaded with the H2O2-specific indicator PG1 resulted in a significant increase in H2O2 production that could be significantly inhibited with the mitochondrial inhibitor carbonyl cyanide 3-chlorophenylhydrazone. Mitochondria were further implicated as the source of zinc-induced H2O2 formation by the observation that exposure to zinc caused a loss of mitochondrial membrane potential. Using MTroGFP1, we showed that zinc exposure of A431 cells induces a rapid loss of reducing redox potential in mitochondria. We also demonstrated that zinc exposure results in rapid swelling of mitochondria isolated from mouse hearts. Conclusion Taken together, these findings show a disruption of mitochondrial integrity, H2O2 formation, and a shift toward positive redox potential in cells exposed to zinc. These data demonstrate the utility of real-time, live-cell imaging to study the role of oxidative stress in toxicological responses.


Journal of the American Chemical Society | 2010

Light-Activated Regulation of Cofilin Dynamics Using a Photocaged Hydrogen Peroxide Generator

Evan W. Miller; Nicolas Taulet; Carl S. Onak; Elizabeth J. New; Julie K. Lanselle; Gillian S. Smelick; Christopher J. Chang

Hydrogen peroxide (H2O2) can exert diverse signaling and stress responses within living systems depending on its spatial and temporal dynamics. Here we report a new small-molecule probe for producing H2O2 on demand upon photoactivation and its application for optical regulation of cofilin-actin rod formation in living cells. This chemical method offers many potential opportunities for dissecting biological roles for H2O2 as well as remote control of cell behavior via H2O2-mediated pathways.

Collaboration


Dive into the Evan W. Miller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maroof M. Adil

University of California

View shared research outputs
Top Co-Authors

Avatar

Antara T. Rao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiwen He

University of California

View shared research outputs
Top Co-Authors

Avatar

Roger Y. Tsien

University of California

View shared research outputs
Top Co-Authors

Avatar

Yi-Lin Huang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge