Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evan Z. Macosko is active.

Publication


Featured researches published by Evan Z. Macosko.


Nature | 2005

Local translation of RhoA regulates growth cone collapse.

Karen Y. Wu; Ulrich Hengst; Llewellyn J. Cox; Evan Z. Macosko; Andreas Jeromin; Erica R. Urquhart; Samie R. Jaffrey

Neuronal development requires highly coordinated regulation of the cytoskeleton within the developing axon. This dynamic regulation manifests itself in axonal branching, turning and pathfinding, presynaptic differentiation, and growth cone collapse and extension. Semaphorin 3A (Sema3A), a secreted guidance cue that primarily functions to repel axons from inappropriate targets, induces cytoskeletal rearrangements that result in growth cone collapse. These effects require intra-axonal messenger RNA translation. Here we show that transcripts for RhoA, a small guanosine triphosphatase (GTPase) that regulates the actin cytoskeleton, are localized to developing axons and growth cones, and this localization is mediated by an axonal targeting element located in the RhoA 3′ untranslated region (UTR). Sema3A induces intra-axonal translation of RhoA mRNA, and this local translation of RhoA is necessary and sufficient for Sema3A-mediated growth cone collapse. These studies indicate that local RhoA translation regulates the neuronal cytoskeleton and identify a new mechanism for the regulation of RhoA signalling.


Nature | 2009

A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans

Evan Z. Macosko; Navin Pokala; Evan H. Feinberg; Sreekanth H. Chalasani; Rebecca A. Butcher; Jon Clardy; Cornelia I. Bargmann

Innate social behaviours emerge from neuronal circuits that interpret sensory information on the basis of an individual’s own genotype, sex and experience. The regulated aggregation behaviour of the nematode Caenorhabditis elegans, a simple animal with only 302 neurons, is an attractive system to analyse these circuits. Wild social strains of C. elegans aggregate in the presence of specific sensory cues, but solitary strains do not. Here we identify the RMG inter/motor neuron as the hub of a regulated circuit that controls aggregation and related behaviours. RMG is the central site of action of the neuropeptide receptor gene npr-1, which distinguishes solitary strains (high npr-1 activity) from wild social strains (low npr-1 activity); high RMG activity is essential for all aspects of social behaviour. Anatomical gap junctions connect RMG to several classes of sensory neurons known to promote aggregation, and to ASK sensory neurons, which are implicated in male attraction to hermaphrodite pheromones. We find that ASK neurons respond directly to pheromones, and that high RMG activity enhances ASK responses in social strains, causing hermaphrodite attraction to pheromones at concentrations that repel solitary hermaphrodites. The coordination of social behaviours by RMG suggests an anatomical hub-and-spoke model for sensory integration in aggregation, and points to functions for related circuit motifs in the C. elegans wiring diagram.


Neuron | 2009

Quantitative Mapping of a Digenic Behavioral Trait Implicates Globin Variation in C. elegans Sensory Behaviors

Patrick T. McGrath; Matthew V. Rockman; Manuel Zimmer; Heeun Jang; Evan Z. Macosko; Cornelia I. Bargmann

Most heritable behavioral traits have a complex genetic basis, but few multigenic traits are understood at a molecular level. Here we show that the C. elegans strains N2 and CB4856 have opposite behavioral responses to simultaneous changes in environmental O(2) and CO(2). We identify two quantitative trait loci (QTL) that affect this trait and map each QTL to a single-gene polymorphism. One gene, npr-1, encodes a previously described neuropeptide receptor whose high activity in N2 promotes CO(2) avoidance. The second gene, glb-5, encodes a neuronal globin domain protein whose high activity in CB4856 modifies behavioral responses to O(2) and combined O(2)/CO(2) stimuli. glb-5 acts in O(2)-sensing neurons to increase O(2)-evoked calcium signals, implicating globins in sensory signaling. An analysis of wild C. elegans strains indicates that the N2 alleles of npr-1 and glb-5 arose recently in the same strain background, possibly as an adaptation to laboratory conditions.


The Journal of Neuroscience | 2006

Functional and Selective RNA Interference in Developing Axons and Growth Cones

Ulrich Hengst; Llewellyn J. Cox; Evan Z. Macosko; Samie R. Jaffrey

Developing axons and growth cones contain “local” mRNAs that are translated in response to various extracellular signaling molecules and have roles in several processes during axonal development, including axonal pathfinding, orientation of axons in chemotactic gradients, and in the regulation of neurotransmitter release. The molecular mechanisms that regulate mRNA translation within axons and growth cones are unknown. Here we show that proteins involved in RNA interference (RNAi), including argonaute-3 and argonaute-4, Dicer, and the fragile X mental retardation protein, are found in developing axons and growth cones. These proteins assemble into functional RNA-induced silencing complexes as transfection of small interfering RNAs selectively into distal axons results in distal axon-specific mRNA knock-down, without reducing transcript levels in proximal axons or associated diffusion of small interfering RNA into proximal axons or cell bodies. RhoA mRNA is localized to axons and growth cones, and intra-axonal translation of RhoA is required for growth cone collapse elicited by Semaphorin 3A (Sema3A), an axonal guidance cue. Selective knock-down of axonal RhoA mRNA abolishes Sema3A-dependent growth cone collapse. Our results demonstrate functional and potent RNAi in axons and identify an approach to spatially regulate mRNA transcripts at a subcellular level in neurons.


Science | 2012

Oxytocin/Vasopressin-Related Peptides Have an Ancient Role in Reproductive Behavior

Jennifer L. Garrison; Evan Z. Macosko; Samantha Bernstein; Navin Pokala; Dirk R. Albrecht; Cornelia I. Bargmann

Social Neuropeptides in Nematodes The neuropeptides oxytocin and vasopressin stimulate maternal, reproductive, aggressive, and affiliative behaviors in mammals. They are implicated in behaviors ranging from ewe-lamb bonding in sheep to pair bonding in voles (see the Perspective by Emmons). Now, Garrison et al. (p. 540) and Beets et al. (p. 543) extend the evolutionary reach of these social neuropeptides to the invertebrate nematode worm, Caenorhabditis elegans. A similar neuropeptide was found to function in mating and also to modulate salt-taste preference, based on prior experience, suggesting an ancient role in associative learning. Oxytocin/vasopressin-related peptides and their receptors coordinate male mating programs in Caenorhabditis elegans. Many biological functions are conserved, but the extent to which conservation applies to integrative behaviors is unknown. Vasopressin and oxytocin neuropeptides are strongly implicated in mammalian reproductive and social behaviors, yet rodent loss-of-function mutants have relatively subtle behavioral defects. Here we identify an oxytocin/vasopressin-like signaling system in Caenorhabditis elegans, consisting of a peptide and two receptors that are expressed in sexually dimorphic patterns. Males lacking the peptide or its receptors perform poorly in reproductive behaviors, including mate search, mate recognition, and mating, but other sensorimotor behaviors are intact. Quantitative analysis indicates that mating motor patterns are fragmented and inefficient in mutants, suggesting that oxytocin/vasopressin peptides increase the coherence of mating behaviors. These results indicate that conserved molecules coordinate diverse behavioral motifs in reproductive behavior.


Cell | 2013

Serotonin and the Neuropeptide PDF Initiate and Extend Opposing Behavioral States in C. elegans

Steven W. Flavell; Navin Pokala; Evan Z. Macosko; Dirk R. Albrecht; Johannes Larsch; Cornelia I. Bargmann

Foraging animals have distinct exploration and exploitation behaviors that are organized into discrete behavioral states. Here, we characterize a neuromodulatory circuit that generates long-lasting roaming and dwelling states in Caenorhabditis elegans. We find that two opposing neuromodulators, serotonin and the neuropeptide pigment dispersing factor (PDF), each initiate and extend one behavioral state. Serotonin promotes dwelling states through the MOD-1 serotonin-gated chloride channel. The spontaneous activity of serotonergic neurons correlates with dwelling behavior, and optogenetic modulation of the critical MOD-1-expressing targets induces prolonged dwelling states. PDF promotes roaming states through a Gαs-coupled PDF receptor; optogenetic activation of cAMP production in PDF receptor-expressing cells induces prolonged roaming states. The neurons that produce and respond to each neuromodulator form a distributed circuit orthogonal to the classical wiring diagram, with several essential neurons that express each molecule. The slow temporal dynamics of this neuromodulatory circuit supplement fast motor circuits to organize long-lasting behavioral states.


Science | 2008

Innate Immunity in Caenorhabditis elegans Is Regulated by Neurons Expressing NPR-1/GPCR

Katie L. Styer; Varsha Singh; Evan Z. Macosko; Sarah E. Steele; Cornelia I. Bargmann; Alejandro Aballay

A large body of evidence indicates that metazoan innate immunity is regulated by the nervous system, but the mechanisms involved in the process and the biological importance of such control remain unclear. We show that a neural circuit involving npr-1, which encodes a G protein–coupled receptor (GPCR) related to mammalian neuropeptide Y receptors, functions to suppress innate immune responses. The immune inhibitory function requires a guanosine 3′,5′-monophosphate–gated ion channel encoded by tax-2 and tax-4 as well as the soluble guanylate cyclase GCY-35. Furthermore, we show that npr-1– and gcy-35–expressing sensory neurons actively suppress immune responses of nonneuronal tissues. A full-genome microarray analysis on animals with altered neural function due to mutation in npr-1 shows an enrichment in genes that are markers of innate immune responses, including those regulated by a conserved PMK-1/p38 mitogen-activated protein kinase signaling pathway. These results present evidence that neurons directly control innate immunity in C. elegans, suggesting that GPCRs may participate in neural circuits that receive inputs from either pathogens or infected sites and integrate them to coordinate appropriate immune responses.


Nature | 2017

Cell diversity and network dynamics in photosensitive human brain organoids

Giorgia Quadrato; Tuan Nguyen; Evan Z. Macosko; John Lawrence Sherwood; Sung Min Yang; Daniel R. Berger; Natalie Maria; Jorg Scholvin; Melissa Goldman; Justin P. Kinney; Edward S. Boyden; Jeff W. Lichtman; Ziv Williams; Steven A. McCarroll; Paola Arlotta

In vitro models of the developing brain such as three-dimensional brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, the cells generated within organoids and the extent to which they recapitulate the regional complexity, cellular diversity and circuit functionality of the brain remain undefined. Here we analyse gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (more than 9 months), allowing for the establishment of relatively mature features, including the formation of dendritic spines and spontaneously active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photosensitive cells, which may offer a way to probe the functionality of human neuronal circuits using physiological sensory stimuli.


Nature Neuroscience | 2017

A molecular census of arcuate hypothalamus and median eminence cell types

John N. Campbell; Evan Z. Macosko; Henning Fenselau; Tune H. Pers; Anna Lyubetskaya; Danielle Tenen; Melissa Goldman; Anne Mj Verstegen; Jon M. Resch; Steven A. McCarroll; Evan D. Rosen; Bradford B. Lowell; Linus T.-Y. Tsai

The hypothalamic arcuate–median eminence complex (Arc-ME) controls energy balance, fertility and growth through molecularly distinct cell types, many of which remain unknown. To catalog cell types in an unbiased way, we profiled gene expression in 20,921 individual cells in and around the adult mouse Arc-ME using Drop-seq. We identify 50 transcriptionally distinct Arc-ME cell populations, including a rare tanycyte population at the Arc-ME diffusion barrier, a new leptin-sensing neuron population, multiple agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) subtypes, and an orexigenic somatostatin neuron population. We extended Drop-seq to detect dynamic expression changes across relevant physiological perturbations, revealing cell type–specific responses to energy status, including distinct responses in AgRP and POMC neuron subtypes. Finally, integrating our data with human genome-wide association study data implicates two previously unknown neuron populations in the genetic control of obesity. This resource will accelerate biological discovery by providing insights into molecular and cell type diversity from which function can be inferred.


Nature | 2016

Balancing selection shapes density-dependent foraging behaviour

Joshua S. Greene; Maximillian Brown; May Dobosiewicz; Itzel G. Ishida; Evan Z. Macosko; Xinxing Zhang; Rebecca A. Butcher; Devin J. Cline; Patrick T. McGrath; Cornelia I. Bargmann

The optimal foraging strategy in a given environment depends on the number of competing individuals and their behavioural strategies. Little is known about the genes and neural circuits that integrate social information into foraging decisions. Here we show that ascaroside pheromones, small glycolipids that signal population density, suppress exploratory foraging in Caenorhabditis elegans, and that heritable variation in this behaviour generates alternative foraging strategies. We find that natural C. elegans isolates differ in their sensitivity to the potent ascaroside icas#9 (IC-asc-C5). A quantitative trait locus (QTL) regulating icas#9 sensitivity includes srx-43, a G-protein-coupled icas#9 receptor that acts in the ASI class of sensory neurons to suppress exploration. Two ancient haplotypes associated with this QTL confer competitive growth advantages that depend on ascaroside secretion, its detection by srx-43 and the distribution of food. These results suggest that balancing selection at the srx-43 locus generates alternative density-dependent behaviours, fulfilling a prediction of foraging game theory.

Collaboration


Dive into the Evan Z. Macosko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cornelia I. Bargmann

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Arpiar Saunders

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anindita Basu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Navin Pokala

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge