Evangelia Komisopoulou
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evangelia Komisopoulou.
Science | 2013
D. Rohle; Janeta Popovici-Muller; Nicolaos Palaskas; Sevin Turcan; Christian Grommes; Carl Campos; Jennifer Tsoi; Owen Clark; Barbara Oldrini; Evangelia Komisopoulou; Kaiko Kunii; Alicia Pedraza; Stefanie Schalm; Lee Silverman; Alexandra Miller; Fang Wang; Hua Yang; Yue Chen; Andrew Kernytsky; Marc K. Rosenblum; Wei Liu; Scott A. Biller; Shinsan M. Su; Cameron Brennan; Timothy A. Chan; Thomas G. Graeber; Katharine E. Yen; Ingo K. Mellinghoff
IDHology Among the most exciting drug targets to emerge from cancer genome sequencing projects are two related metabolic enzymes, isocitrate dehydrogenases 1 and 2 (IDH1, IDH2). Mutations in the IDH1 and IDH2 genes are common in certain types of human cancer. Whether inhibition of mutant IDH activity might offer therapeutic benefits is unclear (see the Perspective by Kim and DeBerardinis). F. Wang et al. (p. 622, published online 4 April) isolated a small molecule that selectively inhibits mutant IDH2, describe the structural details of its binding to the mutant enzyme, and show that this compound suppresses the growth of patient-derived leukemia cells harboring the IDH2 mutation. Rohle et al. (p. 626, published online 4 April) show that a small molecule inhibitor of IDH1 selectively slows the growth of patient-derived brain tumor cells with the IDH1 mutation. A small molecule that inhibits a mutant enzyme in tumors slows malignant growth by inducing cancer cell differentiation. [Also see Perspective by Kim and DeBerardinis] The recent discovery of mutations in metabolic enzymes has rekindled interest in harnessing the altered metabolism of cancer cells for cancer therapy. One potential drug target is isocitrate dehydrogenase 1 (IDH1), which is mutated in multiple human cancers. Here, we examine the role of mutant IDH1 in fully transformed cells with endogenous IDH1 mutations. A selective R132H-IDH1 inhibitor (AGI-5198) identified through a high-throughput screen blocked, in a dose-dependent manner, the ability of the mutant enzyme (mIDH1) to produce R-2-hydroxyglutarate (R-2HG). Under conditions of near-complete R-2HG inhibition, the mIDH1 inhibitor induced demethylation of histone H3K9me3 and expression of genes associated with gliogenic differentiation. Blockade of mIDH1 impaired the growth of IDH1-mutant—but not IDH1–wild-type—glioma cells without appreciable changes in genome-wide DNA methylation. These data suggest that mIDH1 may promote glioma growth through mechanisms beyond its well-characterized epigenetic effects.
Science | 2013
Rosane M. B. Teles; Thomas G. Graeber; Stephan R. Krutzik; Dennis Montoya; Mirjam Schenk; Delphine J. Lee; Evangelia Komisopoulou; Kindra M. Kelly-Scumpia; Rene Chun; Shankar S. Iyer; Euzenir Nunes Sarno; Thomas H. Rea; Martin Hewison; John S. Adams; Stephen J. Popper; David A. Relman; Steffen Stenger; Barry R. Bloom; Genhong Cheng; Robert L. Modlin
Interfering with Interferons Infections with Mycobacteria, including Mycobacterium leprae or M. tuberculosis, vary substantially in their clinical presentation. For instance, in some cases of M. leprae, the infection is self-healing with very few lesions. In contrast, some people experience the disseminated form, where skin lesions abound and bacteria are abundant. In patients infected with M. leprae, Teles et al. (p. 1448, published online 28 February) found that the disseminated disease associates with a type I interferon gene signature, whereas the self-healing form associates with a type II interferon gene signature. In cultured cells, type I interferon and its downstream signaling cascade inhibited the antimicrobial response induced by type II interferons, providing a potential explanation for why robust disease rather than protection is seen in some cases of infection. Disseminated Mycobacterium leprae infection is associated with blockade of the antimicrobial response by type I interferons. Type I interferons (IFN-α and IFN-β) are important for protection against many viral infections, whereas type II interferon (IFN-γ) is essential for host defense against some bacterial and parasitic pathogens. Study of IFN responses in human leprosy revealed an inverse correlation between IFN-β and IFN-γ gene expression programs. IFN-γ and its downstream vitamin D–dependent antimicrobial genes were preferentially expressed in self-healing tuberculoid lesions and mediated antimicrobial activity against the pathogen Mycobacterium leprae in vitro. In contrast, IFN-β and its downstream genes, including interleukin-10 (IL-10), were induced in monocytes by M. leprae in vitro and preferentially expressed in disseminated and progressive lepromatous lesions. The IFN-γ–induced macrophage vitamin D–dependent antimicrobial peptide response was inhibited by IFN-β and by IL-10, suggesting that the differential production of IFNs contributes to protection versus pathogenesis in some human bacterial infections.
Nature Immunology | 2013
Yoko Kidani; Heidi Elsaesser; M. Benjamin Hock; Laurent Vergnes; Kevin J. Williams; Joseph P. Argus; Beth N. Marbois; Evangelia Komisopoulou; Elizabeth B. Wilson; Timothy F. Osborne; Thomas G. Graeber; Karen Reue; David G. Brooks; Steven J. Bensinger
Newly activated CD8+ T cells reprogram their metabolism to meet the extraordinary biosynthetic demands of clonal expansion; however, the signals that mediate metabolic reprogramming remain poorly defined. Here we demonstrate an essential role for sterol regulatory element–binding proteins (SREBPs) in the acquisition of effector-cell metabolism. Without SREBP signaling, CD8+ T cells were unable to blast, which resulted in attenuated clonal expansion during viral infection. Mechanistic studies indicated that SREBPs were essential for meeting the heightened lipid requirements of membrane synthesis during blastogenesis. SREBPs were dispensable for homeostatic proliferation, which indicated a context-specific requirement for SREBPs in effector responses. Our studies provide insights into the molecular signals that underlie the metabolic reprogramming of CD8+ T cells during the transition from quiescence to activation.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Brian J. Skaggs; Mercedes E. Gorre; Ann Ryvkin; Michael R. Burgess; Yongming Xie; Yun Han; Evangelia Komisopoulou; Lauren M. Brown; Joseph A. Loo; Elliot M. Landaw; Charles L. Sawyers; Thomas G. Graeber
The success of targeting kinases in cancer with small molecule inhibitors has been tempered by the emergence of drug-resistant kinase domain mutations. In patients with chronic myeloid leukemia treated with ABL inhibitors, BCR-ABL kinase domain mutations are the principal mechanism of relapse. Certain mutations are occasionally detected before treatment, suggesting increased fitness relative to wild-type p210 BCR-ABL. We evaluated the oncogenicity of eight kinase inhibitor-resistant BCR-ABL mutants and found a spectrum of potencies greater or less than p210. Although most fitness alterations correlate with changes in kinase activity, this is not the case with the T315I BCR-ABL mutation that confers clinical resistance to all currently approved ABL kinase inhibitors. Through global phosphoproteome analysis, we identified a unique phosphosubstrate signature associated with each drug-resistant allele, including a shift in phosphorylation of two tyrosines (Tyr253 and Tyr257) in the ATP binding loop (P-loop) of BCR-ABL when Thr315 is Ile or Ala. Mutational analysis of these tyrosines in the context of Thr315 mutations demonstrates that the identity of the gatekeeper residue impacts oncogenicity by altered P-loop phosphorylation. Therefore, mutations that confer clinical resistance to kinase inhibitors can substantially alter kinase function and confer novel biological properties that may impact disease progression.
Nature Medicine | 2012
Philip T. Liu; Matthew Wheelwright; Rosane M. B. Teles; Evangelia Komisopoulou; Kristina Edfeldt; Benjamin Ferguson; Manali Mehta; Aria Vazirnia; Thomas H. Rea; Euzenir Nunes Sarno; Thomas G. Graeber; Robert L. Modlin
Leprosy provides a model to investigate mechanisms of immune regulation in humans, given that the disease forms a spectrum of clinical presentations that correlate with host immune responses. Here we identified 13 miRNAs that were differentially expressed in the lesions of subjects with progressive lepromatous (L-lep) versus the self-limited tuberculoid (T-lep) disease. Bioinformatic analysis revealed a significant enrichment of L-lep–specific miRNAs that preferentially target key immune genes downregulated in L-lep versus T-lep lesions. The most differentially expressed miRNA in L-lep lesions, hsa-mir-21, was upregulated in Mycobacterium leprae–infected monocytes. By directly downregulating Toll-like receptor 2/1 heterodimer (TLR2/1)-induced CYP27B1 and IL1B expression as well as indirectly upregulating interleukin-10 (IL-10), hsa-mir-21 inhibited expression of the genes encoding two vitamin D–dependent antimicrobial peptides, CAMP and DEFB4A. Conversely, knockdown of hsa-mir-21 in M. leprae–infected monocytes enhanced expression of CAMP and DEFB4A and restored TLR2/1-mediated antimicrobial activity against M. leprae. Therefore, the ability of M. leprae to upregulate hsa-mir-21 targets multiple genes associated with the immunologically localized disease form, providing an effective mechanism to escape from the vitamin D–dependent antimicrobial pathway.
Molecular Systems Biology | 2012
Nicholas A. J. Graham; Martik Tahmasian; Bitika Kohli; Evangelia Komisopoulou; Maggie Zhu; Igor Vivanco; Michael A. Teitell; Hong Wu; Antoni Ribas; Roger S. Lo; Ingo K. Mellinghoff; Paul S. Mischel; Thomas G. Graeber
The altered metabolism of cancer can render cells dependent on the availability of metabolic substrates for viability. Investigating the signaling mechanisms underlying cell death in cells dependent upon glucose for survival, we demonstrate that glucose withdrawal rapidly induces supra‐physiological levels of phospho‐tyrosine signaling, even in cells expressing constitutively active tyrosine kinases. Using unbiased mass spectrometry‐based phospho‐proteomics, we show that glucose withdrawal initiates a unique signature of phospho‐tyrosine activation that is associated with focal adhesions. Building upon this observation, we demonstrate that glucose withdrawal activates a positive feedback loop involving generation of reactive oxygen species (ROS) by NADPH oxidase and mitochondria, inhibition of protein tyrosine phosphatases by oxidation, and increased tyrosine kinase signaling. In cells dependent on glucose for survival, glucose withdrawal‐induced ROS generation and tyrosine kinase signaling synergize to amplify ROS levels, ultimately resulting in ROS‐mediated cell death. Taken together, these findings illustrate the systems‐level cross‐talk between metabolism and signaling in the maintenance of cancer cell homeostasis.
Physics in Medicine and Biology | 2006
Patrick L. Chow; David Stout; Evangelia Komisopoulou; Arion F. Chatziioannou
Many research institutions have a full suite of preclinical tomographic scanners to answer biomedical questions in vivo. Routine multi-modality imaging requires robust registration of images generated by various tomographs. We have implemented a hardware registration method for preclinical imaging that is similar to that used in the combined positron emission tomography (PET)/computed tomography (CT) scanners in the clinic. We designed an imaging chamber which can be rigidly and reproducibly mounted on separate microPET and microCT scanners. We have also designed a three-dimensional grid phantom with 1288 lines that is used to generate the spatial transformation matrix from software registration using a 15-parameter perspective model. The imaging chamber works in combination with the registration phantom synergistically to achieve the image registration goal. We verified that the average registration error between two imaging modalities is 0.335 mm using an in vivo mouse bone scan. This paper also estimates the impact of image misalignment on PET quantitation using attenuation corrections generated from misregistered images. Our technique is expected to produce PET quantitation errors of less than 5%. The methods presented are robust and appropriate for routine use in high throughput animal imaging facilities.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Justin M. Drake; Nicholas A. J. Graham; Tanya Stoyanova; Amir Sedghi; Andrew S. Goldstein; Houjian Cai; Daniel Smith; Hong Zhang; Evangelia Komisopoulou; Jiaoti Huang; Thomas G. Graeber; Owen N. Witte
Dominant mutations or DNA amplification of tyrosine kinases are rare among the oncogenic alterations implicated in prostate cancer. We demonstrate that castration-resistant prostate cancer (CRPC) in men exhibits increased tyrosine phosphorylation, raising the question of whether enhanced tyrosine kinase activity is observed in prostate cancer in the absence of specific tyrosine kinase mutation or DNA amplification. We generated a mouse model of prostate cancer progression using commonly perturbed non-tyrosine kinase oncogenes and pathways and detected a significant up-regulation of tyrosine phosphorylation at the carcinoma stage. Phosphotyrosine peptide enrichment and quantitative mass spectrometry identified oncogene-specific tyrosine kinase signatures, including activation of EGFR, ephrin type-A receptor 2 (EPHA2), and JAK2. Kinase:substrate relationship analysis of the phosphopeptides also revealed ABL1 and SRC tyrosine kinase activation. The observation of elevated tyrosine kinase signaling in advanced prostate cancer and identification of specific tyrosine kinase pathways from genetically defined tumor models point to unique therapeutic approaches using tyrosine kinase inhibitors for advanced prostate cancer.
Cancer Research | 2013
Kevin J. Williams; Joseph P. Argus; Yue Zhu; Moses Q. Wilks; Beth N. Marbois; Autumn G. York; Yoko Kidani; Alexandra L. Pourzia; David Akhavan; Dominique N. Lisiero; Evangelia Komisopoulou; Amy H. Henkin; Horacio Soto; Brian T. Chamberlain; Laurent Vergnes; Michael E. Jung; Jorge Z. Torres; Linda M. Liau; Heather R. Christofk; Robert M. Prins; Paul S. Mischel; Karen Reue; Thomas G. Graeber; Steven J. Bensinger
The sterol regulatory element-binding proteins (SREBP) are key transcriptional regulators of lipid metabolism and cellular growth. It has been proposed that SREBP signaling regulates cellular growth through its ability to drive lipid biosynthesis. Unexpectedly, we find that loss of SREBP activity inhibits cancer cell growth and viability by uncoupling fatty acid synthesis from desaturation. Integrated lipid profiling and metabolic flux analysis revealed that cancer cells with attenuated SREBP activity maintain long-chain saturated fatty acid synthesis, while losing fatty acid desaturation capacity. We traced this defect to the uncoupling of fatty acid synthase activity from stearoyl-CoA desaturase 1 (SCD1)-mediated desaturation. This deficiency in desaturation drives an imbalance between the saturated and monounsaturated fatty acid pools resulting in severe lipotoxicity. Importantly, replenishing the monounsaturated fatty acid pool restored growth to SREBP-inhibited cells. These studies highlight the importance of fatty acid desaturation in cancer growth and provide a novel mechanistic explanation for the role of SREBPs in cancer metabolism.
Nature Medicine | 2012
Mirjam Schenk; Stephan R. Krutzik; Peter A. Sieling; Delphine J. Lee; Rosane M. B. Teles; Maria Teresa Ochoa; Evangelia Komisopoulou; Euzenir Nunes Sarno; Thomas H. Rea; Thomas G. Graeber; Soo Hyun Kim; Genhong Cheng; Robert L. Modlin
It is unclear whether the ability of the innate immune system to recognize distinct ligands from a single microbial pathogen via multiple pattern recognition receptors (PRRs) triggers common pathways or differentially triggers specific host responses. In the human mycobacterial infection leprosy, we found that activation of monocytes via nucleotide-binding oligomerization domain-containing protein 2 (NOD2) by its ligand muramyl dipeptide, as compared to activation via heterodimeric Toll-like receptor 2 and Toll-like receptor 1 (TLR2/1) by triacylated lipopeptide, preferentially induced differentiation into dendritic cells (DCs), which was dependent on a previously unknown interleukin-32 (IL-32)-dependent mechanism. Notably, IL-32 was sufficient to induce monocytes to rapidly differentiate into DCs, which were more efficient than granulocyte-macrophage colony–stimulating factor (GM-CSF)-derived DCs in presenting antigen to major histocompatibility complex (MHC) class I–restricted CD8+ T cells. Expression of NOD2 and IL-32 and the frequency of CD1b+ DCs at the site of leprosy infection correlated with the clinical presentation; they were greater in patients with limited as compared to progressive disease. The addition of recombinant IL-32 restored NOD2-induced DC differentiation in patients with the progressive form of leprosy. In conclusion, the NOD2 ligand–induced, IL-32–dependent DC differentiation pathway contributes a key and specific mechanism for host defense against microbial infection in humans.