Evangelia Yannaki
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evangelia Yannaki.
Lancet Oncology | 2009
Fabio Ciceri; Chiara Bonini; Maria Teresa Lupo Stanghellini; Attilio Bondanza; Catia Traversari; Monica Salomoni; Lucia Turchetto; Scialini Colombi; Massimo Bernardi; Jacopo Peccatori; Alessandra Pescarollo; Paolo Servida; Zulma Magnani; Serena Kimi Perna; Veronica Valtolina; Fulvio Crippa; Luciano Callegaro; Elena Spoldi; Roberto Crocchiolo; Katharina Fleischhauer; Maurilio Ponzoni; Luca Vago; Silvano Rossini; Armando Santoro; Elisabetta Todisco; Jane F. Apperley; Eduardo Olavarria; Shimon Slavin; Eva M. Weissinger; Arnold Ganser
BACKGROUND Procedures to prevent severe graft-versus-host disease (GVHD) delay immune reconstitution secondary to transplants of haploidentical haemopoietic stem cells for the treatment of leukaemia, leading to high rates of late infectious mortality. We aimed to systematically add back genetically engineered donor lymphocytes to facilitate immune reconstitution and prevent late mortality. METHODS In a phase I-II, multicentre, non-randomised trial of haploidentical stem-cell transplantation, we infused donor lymphocytes expressing herpes-simplex thymidine kinase suicide gene (TK-cells) after transplantation. The primary study endpoint was immune reconstitution defined as circulating CD3+ count of 100 cells per muL or more for two consecutive observations. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00423124. FINDINGS From Aug 13, 2002, to March 26, 2008, 50 patients (median age 51 years, range 17-66) received haploidentical stem-cell transplants for high-risk leukaemia. Immune reconstitution was not recorded before infusion of TK-cells. 28 patients received TK-cells starting 28 days after transplantation; 22 patients obtained immune reconstitution at median 75 days (range 34-127) from transplantation and 23 days (13-42) from infusion. Ten patients developed acute GVHD (grade I-IV) and one developed chronic GVHD, which were controlled by induction of the suicide gene. Overall survival at 3 years was 49% (95% CI 25-73) for 19 patients who were in remission from primary leukaemia at the time of stem-cell transplantation. After TK-cell infusion, the last death due to infection was at 166 days, this was the only infectious death at more than 100 days. No acute or chronic adverse events were related to the gene-transfer procedure. INTERPRETATION Infusion of TK-cells might be effective in accelerating immune reconstitution, while controlling GVHD and protecting patients from late mortality in those who are candidates for haploidentical stem-cell transplantation. FUNDING MolMed SpA, Italian Association for Cancer Research.
Annals of the Rheumatic Diseases | 2012
Anastasia Papadopoulou; Minas Yiangou; Evangelia Athanasiou; Nikolaos Zogas; Panayotis Kaloyannidis; Ioannis Batsis; Athanasios Fassas; Achilles Anagnostopoulos; Evangelia Yannaki
Objective The role of mesenchymal stem cells (MSC) in experimental arthritis is undoubtedly conflicting. This study explored the effect of bone marrow-derived MSC in previously untested and pathogenetically different models of rheumatoid arthritis (RA). Methods MSC were tested both in an induced (adjuvant-induced) and a spontaneous (K/BxN) arthritis model. Arthritis was assessed clinically and histologically. The proliferation of splenocytes and fibroblast-like synoviocytes (FLS) in the presence of MSC was measured by radioactivity incorporation. Toll-like receptor (TLR) expression was measured by real-time PCR. T-regulatory cell (Treg) frequency, T-cell apoptosis and cytokine secretion were monitored by flow cytometry. Results MSC, in vitro, strongly inhibited critical cell populations; splenocytes and FLS. In contrast, MSC proved ineffective in vivo, unless they were administered before disease onset, an effect implying that the inflammatory arthritic milieu potentially abrogates MSC immunomodulatory properties. In order to alleviate inflammation before MSC infusion, the authors administered, at arthritis onset, a short course with a proteasome inhibitor, bortezomib, whereas MSC were infused when established disease was expected. The bortezomib plus MSC group demonstrated a significantly decreased arthritis score over arthritic, MSC-only, bortezomib-only groups, also confirmed by histology and immunohistochemistry. The bortezomib plus MSC combination restored TLR expression and Treg frequency in blood and normalised FLS and splenocyte proliferation, apoptosis and cytokine secretion. Conclusion MSC lose their immunomodulatory properties when infused in the inflammatory micromilieu of autoimmune arthritis. Conditioning of the recipient with bortezomib alters the disease microenvironment enabling MSC to modulate arthritis. Should milieu limitations also operate in human disease, this approach could serve as a strategy to treat RA by MSC.
Molecular Therapy | 2012
Evangelia Yannaki; Thalia Papayannopoulou; Erica C. Jonlin; Fani Zervou; Garyfalia Karponi; Angeliki Xagorari; Pamela S. Becker; Nikoleta Psatha; Ioannis Batsis; Panayotis Kaloyannidis; Varvara Tahynopoulou; Varnavas Constantinou; Asimina Bouinta; Konstantia Kotta; Aglaia Athanassiadou; Achilles Anagnostopoulos; Athanasios Fassas; George Stamatoyannopoulos
The safety and efficacy of hematopoietic stem cell (HSC) mobilization was investigated in adult splenectomized (SPL) and non-SPL patients with thalassemia major, in two clinical trials, using different mobilization modes: granulocyte-colony-stimulating factor (G-CSF)-alone, G-CSF following pretreatment with hydroxyurea (HU), plerixafor-alone. G-CSF-mobilization was both safe and effective in non-SPL patients. However, in SPL patients the procedure resulted in excessive response to G-CSF, expressed as early hyperleukocytosis necessitating significant dose reduction, and suboptimal CD34(+) cells yields. One-month HU-pretreatment prevented hyperleukocytosis and allowed successful CD34(+) cell collections when an optimal washout period was maintained, but it significantly prolonged the mobilization procedure. Plerixafor resulted in rapid and effective mobilization in both SPL and non-SPL patients and was well-tolerated. For gene therapy of thalassemia, G-CSF or Plerixafor could be used as mobilization agents in non-SPL patients whereas Plerixafor appears to be the mobilization agent of choice in SPL adult thalassemics in terms of safety and efficacy.
Arthritis & Rheumatism | 2010
Evangelia Yannaki; Anastasia Papadopoulou; Evangelia Athanasiou; Panayotis Kaloyannidis; Argyro Paraskeva; Dimitris Bougiouklis; Panayotis Palladas; Minas Yiangou; Achilles Anagnostopoulos
OBJECTIVE To explore the effect of bortezomib in splenocytes and fibroblast-like synoviocytes (FLS) and its in vivo potency in a rat model of adjuvant-induced arthritis (AIA), which resembles human rheumatoid arthritis (RA). METHODS AIA was induced with Freunds complete adjuvant. Splenocyte and FLS proliferation and apoptosis were measured by radioactivity incorporation and flow cytometry, respectively. The invasiveness of FLS from rats with AIA was tested in a Transwell system. The pattern of cytokine secretion was evaluated by cytometric bead array in splenocyte supernatants. Bortezomib was administered prophylactically or therapeutically, and arthritis was assessed clinically and histologically. Immunohistochemistry was performed for markers of inflammation and angiogenesis in joints. Hematologic and biochemical parameters were tested in peripheral blood (PB). Representative animals were examined by computed tomography (CT) scanning before and after bortezomib administration. The expression of Toll-like receptor 2 (TLR-2), TLR-3, and TLR-4 in PB and FLS was measured by real-time polymerase chain reaction, and alterations in specific cell populations in PB and spleen were determined by flow cytometry. RESULTS In vitro, bortezomib exhibited significant inhibitory and proapoptotic activity in splenocytes and FLS from rats with AIA, altered the inflammatory cytokine pattern, and reduced the invasiveness of FLS from rats with AIA. In vivo, bortezomib significantly ameliorated disease severity. Remission was associated with improved histology and decreased expression of CD3, CD79a, CD11b, cyclooxygenase 1, and factor VIII in target tissues as well as down-regulation of TLR expression in PB and cultured FLS. CT scanning demonstrated a bone healing effect after treatment. CONCLUSION Our findings suggest that bortezomib affects AIA in a pleiotropic manner and that this drug may be effective in RA.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Peristera Paschou; Petros Drineas; Evangelia Yannaki; Anna Razou; Katerina Kanaki; Fotis Tsetsos; Shanmukha Sampath Padmanabhuni; Manolis Michalodimitrakis; Maria C. Renda; Sonja Pavlovic; Achilles Anagnostopoulos; John A. Stamatoyannopoulos; Kenneth K. Kidd; George Stamatoyannopoulos
Significance The question of colonization of Europe by Neolithic people of the Near East and their contribution to the farming economy of Europe has been addressed with extensive archaeological studies and many genetic investigations of extant European and Near Eastern populations. Here, we use DNA polymorphisms of extant populations to investigate the patterns of gene flow from the Near East to Europe. Our data support the hypothesis that Near Eastern migrants reached Europe from Anatolia. A maritime route and island hopping was mainly used by these Near Eastern migrants to reach Southern Europe. The Neolithic populations, which colonized Europe approximately 9,000 y ago, presumably migrated from Near East to Anatolia and from there to Central Europe through Thrace and the Balkans. An alternative route would have been island hopping across the Southern European coast. To test this hypothesis, we analyzed genome-wide DNA polymorphisms on populations bordering the Mediterranean coast and from Anatolia and mainland Europe. We observe a striking structure correlating genes with geography around the Mediterranean Sea with characteristic east to west clines of gene flow. Using population network analysis, we also find that the gene flow from Anatolia to Europe was through Dodecanese, Crete, and the Southern European coast, compatible with the hypothesis that a maritime coastal route was mainly used for the migration of Neolithic farmers to Europe.
World Journal of Gastroenterology | 2015
Eleftheria Tsolaki; Evangelia Yannaki
The existing mismatch between the great demand for liver transplants and the number of available donor organs highlights the urgent need for alternative therapeutic strategies in patients with acute or chronic liver failure. The rapidly growing knowledge on stem cell biology and the intrinsic repair processes of the liver has opened new avenues for using stem cells as a cell therapy platform in regenerative medicine for hepatic diseases. An impressive number of cell types have been investigated as sources of liver regeneration: adult and fetal liver hepatocytes, intrahepatic stem cell populations, annex stem cells, adult bone marrow-derived hematopoietic stem cells, endothelial progenitor cells, mesenchymal stromal cells, embryonic stem cells, and induced pluripotent stem cells. All these highly different cell types, used either as cell suspensions or, in combination with biomaterials as implantable liver tissue constructs, have generated great promise for liver regeneration. However, fundamental questions still need to be addressed and critical hurdles to be overcome before liver cell therapy emerges. In this review, we summarize the state-of-the-art in the field of stem cell-based therapies for the liver along with existing challenges and future perspectives towards a successful liver cell therapy that will ultimately deliver its demanding goals.
Expert Reviews in Molecular Medicine | 2010
Evangelia Yannaki; David W. Emery; George Stamatoyannopoulos
The β-thalassaemias are inherited anaemias that form the most common class of monogenic disorders in the world. Treatment options are limited, with allogeneic haematopoietic stem cell transplantation offering the only hope for lifelong cure. However, this option is not available for many patients as a result of either the lack of compatible donors or the increased risk of transplant-related mortality in subjects with organ damage resulting from accumulated iron. The paucity of alternative treatments for patients that fall into either of these categories has led to the development of a revolutionary treatment strategy based on gene therapy. This approach involves replacing allogeneic stem cell transplantation with the transfer of normal globin genes into patient-derived, autologous haematopoietic stem cells. This highly attractive strategy offers several advantages, including bypassing the need for allogeneic donors and the immunosuppression required to achieve engraftment of the transplanted cells and to eliminate the risk of donor-related graft-versus-host disease. This review discusses the many advances that have been made towards this endeavour as well as the hurdles that must still be overcome before gene therapy for β-thalassaemia, as well as many other gene therapy applications, can be widely applied in the clinic.
Blood | 2015
Garyfalia Karponi; Nikoletta Psatha; Carsten W. Lederer; Jennifer E. Adair; Fani Zervou; Nikolaos Zogas; Marina Kleanthous; Constantinos Tsatalas; Achilles Anagnostopoulos; Michel Sadelain; Isabelle Riviere; George Stamatoyannopoulos; Evangelia Yannaki
Globin gene therapy requires abundant numbers of highly engraftable, autologous hematopoietic stem cells expressing curative levels of β-globin on differentiation. In this study, CD34+ cells from 31 thalassemic patients mobilized with hydroxyurea+granulocyte colony-stimulating factor (G-CSF), G-CSF, Plerixafor, or Plerixafor+G-CSF were transduced with the TNS9.3.55 β-globin lentivector and compared for transducibility and globin expression in vitro, as well as engraftment potential in a xenogeneic model after partial myeloablation. Transduction efficiency and vector copy number (VCN) averaged 48.4 ± 2.8% and 1.91 ± 0.04, respectively, whereas expression approximated the one-copy normal β-globin output. Plerixafor+G-CSF cells produced the highest β-globin expression/VCN. Long-term multilineage engraftment and persistent VCN and vector expression was encountered in all xenografted groups, with Plerixafor+G-CSF-mobilized cells achieving superior short-term engraftment rates, with similar numbers of CD34+ cells transplanted. Overall, Plerixafor+G-CSF not only allows high CD34+ cell yields but also provides increased β-globin expression/VCN and enhanced early human chimerism under nonmyeloablative conditions, thus representing an optimal graft for thalassemia gene therapy.
Blood Cells Molecules and Diseases | 2014
Eleftheria Tsolaki; Evangelia Athanasiou; Eleni Gounari; Nikolaos Zogas; Eleni Siotou; Minas Yiangou; Achilles Anagnostopoulos; Evangelia Yannaki
Bone marrow (BM) could serve as a source of cells facilitating liver repopulation in case of hepatic damage. Currently available hematopoietic stem cell (HSC) mobilizing agents, were comparatively tested for healing potential in liver fibrosis. Carbon tetrachloride (CCl4)-injured mice previously reconstituted with Green Fluorescent Protein BM were mobilized with Granulocyte-Colony Stimulating Factor (G-CSF), Plerixafor or G-CSF+Plerixafor. Hepatic fibrosis, stellate cell activation and oval stem cell frequency were measured by Gomori and by immunohistochemistry for a-Smooth Muscle Actin and Cytokeratin-19, respectively. Angiogenesis was evaluated by ELISA and immunohistochemistry. Quantitative real-time PCR was used to determine the mRNA levels of liver Peroxisome Proliferator-Activated Receptor gamma (PPAR-γ), Interleukin-6 (IL-6) and Tumor Necrosis-alpha (TNFα). BM-derived cells were tracked by double immunofluorescence. The spontaneous migration of mobilized HSCs towards injured liver and its cytokine secretion profile was determined in transwell culture systems. Either single-agent mobilization or the combination of agents significantly ameliorated hepatic damage by decreasing fibrosis and restoring the abnormal vascular network in the liver of mobilized mice compared to CCl4-only mice. The degree of fibrosis reduction was similar among all mobilized mice despite that G-CSF+Plerixafor yielded significantly higher numbers of circulating HSCs over other agents. The liver homing potential of variously mobilized HSCs differed among the agents. An extended G-CSF treatment provided the highest anti-fibrotic effect over all tested modalities, induced by the proliferation of hepatic stem cells and decreased hepatic inflammation. Plerixafor-mobilized HSCs, despite their reduced liver homing potential, reversed fibrosis mainly by increasing hepatic PPAR-γ and VEGF expression. In all groups, BM-derived mature hepatocytes as well as liver-committed BM stem cells were detected only at low frequencies, further supporting the concept that alternative mechanisms rather than direct HSC effects regulate liver recovery. Overall, our data suggest that G-CSF, Plerixafor and G-CSF+Plerixafor act differentially during the wound healing process, ultimately providing a potent anti-fibrotic effect.
Transplantation | 2010
Panayotis Kaloyannidis; Evangelia Yannaki; Ioanna Sakellari; Ekaterini Bitzioni; Anastasia Athanasiadou; Despina Mallouri; Achilles Anagnostopoulos
Background. Several clinical and preclinical studies have shown that desferrioxamine (DFO), in addition to iron chelation, demonstrates antiproliferative activities against some aggressive malignancies and leukemic cells. Methods. In this study, we investigated retrospectively the role of early DFO administration postallografting, in terms of relapse incidence (RI) and disease-free survival (DFS) in 143 patients consecutively transplanted for hematological malignancies. Results. Thirty-seven of 143 patients received DFO. The 5-year RI and DFS in patients who received more than 2 months DFO were 5% and 76%, respectively, as opposed to 47% and 41% in no DFO-treated patients (P=0.01, respectively). Not a single relapse event was detected in DFO-treated patients who were allotransplanted in first complete remission, and in addition, the RI was lower in DFO-treated patients with advanced disease at time of transplantation (31% vs. 75%, P=0.03). Patients with chronic graft versus host disease who received DFO had lower RI than unntreated patients (17% vs. 39%, P=0.03). Multivariate analysis demonstrated that DFO administration for more than 2 months was an independent factor for lower RI and improved DFS. Conclusions. DFO administration postallogeneic transplantation may improve DFS by reducing relapse. This clinical observation could be only confirmed by prospective trials that will determine the role of DFO in the allotransplantation setting.