Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eve C. Tsai is active.

Publication


Featured researches published by Eve C. Tsai.


Journal of Neurotrauma | 2004

Synthetic Hydrogel Guidance Channels Facilitate Regeneration of Adult Rat Brainstem Motor Axons after Complete Spinal Cord Transection

Eve C. Tsai; Paul D. Dalton; Molly S. Shoichet; Charles H. Tator

Synthetic guidance channels or tubes have been shown to promote axonal regeneration within the spinal cord from brainstem motor nuclei with the inclusion of agents such as matrices, cells, or growth factors to the tube. We examined the biocompatibility and regenerative capacity of synthetic hydrogel tubular devices that were composed of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (PHEMA-MMA). Two PHEMA-MMA channels, having a mean elastic modulus of either 177 or 311 kPa were implanted into T8-transected spinal cords of adult Sprague Dawley rats. The cord stumps were inserted into the channels and fibrin glue was applied to the cord-channel interface. An expanded polytetrafluoroethylene (ePTFE) membrane was used for duraplasty. Controls underwent cord transection alone. Gross and microscopic examination of the spinal cords showed continuity of tissue within the synthetic guidance channels between the cord stumps at 4 and 8 weeks. There was a trend towards an increased area and width of bridging neural tissue in the 311-kPa guidance channels compared to the 177-kPa channels. Neurofilament stained axons were visualized within the bridging tissue, and serotonergic axons were found to enter the 311-kPa channel. Retrograde axonal tracing revealed regeneration of axons from reticular, vestibular, and raphe brainstem motor nuclei. For both channels, there was minimal scarring at the channel-cord interface, and less scarring at the channel-dura interface compared to that observed next to the ePTFE. The present study is the first to show that axons from brainstem motor nuclei regenerated in unfilled synthetic hydrogel guidance channels after complete spinal cord transection.


Journal of Neurotrauma | 2015

The Influence of Time from Injury to Surgery on Motor Recovery and Length of Hospital Stay in Acute Traumatic Spinal Cord Injury: An Observational Canadian Cohort Study

Marcel F. Dvorak; Vanessa K. Noonan; Nader Fallah; Charles G. Fisher; Joel S. Finkelstein; Brian K. Kwon; Carly S. Rivers; Henry Ahn; Jérôme Paquet; Eve C. Tsai; Andrea Townson; Najmedden Attabib; Sean D. Christie; Brian Drew; Daryl R. Fourney; Richard Fox; R. John Hurlbert; Michael G. Johnson; Angelo Gary Linassi; Stefan Parent; Michael G. Fehlings

To determine the influence of time from injury to surgery on neurological recovery and length of stay (LOS) in an observational cohort of individuals with traumatic spinal cord injury (tSCI), we analyzed the baseline and follow-up motor scores of participants in the Rick Hansen Spinal Cord Injury Registry to specifically assess the effect of an early (less than 24 h from injury) surgical procedure on motor recovery and on LOS. One thousand four hundred and ten patients who sustained acute tSCIs with baseline American Spinal Injury Association Impairment Scale (AIS) grades A, B, C, or D and were treated surgically were analyzed to determine the effect of the timing of surgery (24, 48, or 72 h from injury) on motor recovery and LOS. Depending on the distribution of data, we used different types of generalized linear models, including multiple linear regression, gamma regression, and negative binomial regression. Persons with incomplete AIS B, C, and D injuries from C2 to L2 demonstrated motor recovery improvement of an additional 6.3 motor points (SE=2.8 p<0.03) when they underwent surgical treatment within 24 h from the time of injury, compared with those who had surgery later than 24 h post-injury. This beneficial effect of early surgery on motor recovery was not seen in the patients with AIS A complete SCI. AIS A and B patients who received early surgery experienced shorter hospital LOS. While the issues of when to perform surgery and what specific operation to perform remain controversial, this work provides evidence that for an incomplete acute tSCI in the cervical, thoracic, or thoracolumbar spine, surgery performed within 24 h from injury improves motor neurological recovery. Early surgery also reduces LOS.


Experimental Neurology | 2003

Novel intrathecal delivery system for treatment of spinal cord injury.

Maria C. Jimenez Hamann; Eve C. Tsai; Charles H. Tator; Molly S. Shoichet

A novel, localized method for potential delivery of therapeutic agents to the injured spinal cord was investigated. The strategy consists of a polymeric drug solution that gels after injection into the subarachnoid space (SAS). By dispersing therapeutic agents in the polymeric solution, a method is provided for localized delivery to the spinal cord. To determine whether intrathecal injection of this drug delivery system (DDS) would affect cerebrospinal fluid (CSF) flow, a spinal canal model was built using dimensional analysis. Blocking up to 52% of the modeled subarachnoid space of the spinal canal caused minimal pressure differences (9.22 +/- 1.45 Pa), suggesting that implantation of a DDS would not subject the spinal cord to increased pressure. The safety of the DDS was also assessed in vivo by injecting collagen into the SAS of Sprague Dawley rats. Controls received injections of artificial CSF (aCSF). Collagen or aCSF was injected at the T2-T3 spinal level of both uninjured rats and rats injured with a 20g compression clip. The injected collagen persisted in the SAS for at least 8 weeks post-implantation and did not elicit an inflammatory reaction in either uninjured or injured animals. Long-term functional behavior was evaluated with the Basso, Beattie, and Bresnahan (BBB) scale weekly for 8 weeks. Functional behavior was similar in the collagen and aCSF groups, also indicating that the DDS was safe. This minimally invasive DDS may provide an alternative, safe method to deliver therapeutic agents intrathecally.


Journal of Histochemistry and Cytochemistry | 2001

A Novel Method for Simultaneous Anterograde and Retrograde Labeling of Spinal Cord Motor Tracts in the Same Animal

Eve C. Tsai; Rita L. van Bendegem; Steven W. Hwang; Charles H. Tator

Examination of repaired spinal cord tracts has usually required separate groups of animals for anterograde and retrograde tracing owing to the incompatibility of techniques such as tissue fixation. However, anterograde and retrograde labeling of different animals subjected to the same repair may not allow accurate examination of that repair strategy because widely variable results can occur in animals subjected to the same strategy. We have developed a reliable method of labeling spinal cord motor tracts bidirectionally in the same animal using DiI, a lipophilic dye, to anterogradely label the corticospinal tract and Fluoro-Gold (FG) to retrogradely label cortical and brainstem neurons of several spinal cord motor tracts in normal and injured adult rats. Other tracer combinations (lipophilic dyes or fluorescent dextrans) were also investigated but were less effective. We also developed methods to minimize autofluorescence with the DiI/FG technique, and found that the DiI/FG technique is compatible with decalcification and immunohistochemistry for several markers relevant for studies of spinal cord regeneration. Thus, the use of anterograde DiI and retrograde FG is a novel technique for bidirectional labeling of the motor tracts of the adult spinal cord with fluorescent tracers and should be useful for demonstrating neurite regeneration in studies of spinal cord repair. (J Histochem Cytochem 49:1111–1122, 2001)


Current Pharmaceutical Design | 2005

Neuroprotection and Regeneration Strategies for Spinal Cord Repair

Eve C. Tsai; Charles H. Tator

The journey toward a cure for spinal cord injury (SCI) has taken many paths. In this article, we review these paths, and highlight the clinical applications of these experimental repair strategies. Initial strategies involved attempts at neuroprotection with steroids and other anti-inflammatory drugs. Other anti-ischemia treatments, agents to eliminate the damage from excitotoxicity, and anti-apoptotic agents were also tried. Another avenue involved enhancing the function of the remaining uninjured axons by measures to produce remyelination and medications to improve axonal conduction. In the last two decades there has been a major effort to enhance spinal cord axonal regeneration through a variety of techniques including neutralization of neurite inhibition, administration of neurotrophic factors, implantation of synthetic channels, and transplantation of a variety of cell types. Indeed, several of these strategies have been so promising in animals that clinicians have been stimulated to explore their potential human application. We also examine the different experimental models of SCI used to assess repair, and discuss how the injury model impacts on the assessment of axonal regeneration and functional recovery after SCI. The mechanisms of recovery that may be involved after SCI will be analyzed, and their relevance toward finding a cure for human SCI. Unfortunately, the goal of producing significant functional regeneration of the human spinal cord has not yet been achieved despite the many strategies that have been developed. It is our hope that improved understanding of the mechanisms underlying functional recovery will lead to successful therapeutic strategies in humans.


Journal of Neurotrauma | 2014

Minimizing Errors in Acute Traumatic Spinal Cord Injury Trials by Acknowledging the Heterogeneity of Spinal Cord Anatomy and Injury Severity: An Observational Canadian Cohort Analysis

Marcel F. Dvorak; Vanessa K. Noonan; Nader Fallah; Charles G. Fisher; Carly S. Rivers; Henry Ahn; Eve C. Tsai; Angelo Gary Linassi; Sean D. Christie; Najmedden Attabib; R. John Hurlbert; Daryl R. Fourney; Michael G. Johnson; Michael G. Fehlings; Brian Drew; Jérôme Paquet; Stefan Parent; Andrea Townson; Chester H. Ho; B. C. Craven; Dany Gagnon; Deborah Tsui; Richard Fox; Jean Marc Mac-Thiong; Brian K. Kwon

Clinical trials of therapies for acute traumatic spinal cord injury (tSCI) have failed to convincingly demonstrate efficacy in improving neurologic function. Failing to acknowledge the heterogeneity of these injuries and under-appreciating the impact of the most important baseline prognostic variables likely contributes to this translational failure. Our hypothesis was that neurological level and severity of initial injury (measured by the American Spinal Injury Association Impairment Scale [AIS]) act jointly and are the major determinants of motor recovery. Our objective was to quantify the influence of these variables when considered together on early motor score recovery following acute tSCI. Eight hundred thirty-six participants from the Rick Hansen Spinal Cord Injury Registry were analyzed for motor score improvement from baseline to follow-up. In AIS A, B, and C patients, cervical and thoracic injuries displayed significantly different motor score recovery. AIS A patients with thoracic (T2-T10) and thoracolumbar (T11-L2) injuries had significantly different motor improvement. High (C1-C4) and low (C5-T1) cervical injuries demonstrated differences in upper extremity motor recovery in AIS B, C, and D. A hypothetical clinical trial example demonstrated the benefits of stratifying on neurological level and severity of injury. Clinically meaningful motor score recovery is predictably related to the neurological level of injury and the severity of the baseline neurological impairment. Stratifying clinical trial cohorts using a joint distribution of these two variables will enhance a studys chance of identifying a true treatment effect and minimize the risk of misattributed treatment effects. Clinical studies should stratify participants based on these factors and record the number of participants and their mean baseline motor scores for each category of this joint distribution as part of the reporting of participant characteristics. Improved clinical trial design is a high priority as new therapies and interventions for tSCI emerge.


Disease Models & Mechanisms | 2014

Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat

Juan Felipe Diaz Quiroz; Eve C. Tsai; Matthew Coyle; Tina Sehm; Karen Echeverri

Most spinal cord injuries lead to permanent paralysis in mammals. By contrast, the remarkable regenerative abilities of salamanders enable full functional recovery even from complete spinal cord transections. The molecular differences underlying this evolutionary divergence between mammals and amphibians are poorly understood. We focused on upstream regulators of gene expression as primary entry points into this question. We identified a group of microRNAs (miRNAs) that are conserved between the Mexican axolotl salamander (Ambystoma mexicanum) and mammals but show marked cross-species differences in regulation patterns following spinal cord injury. We found that precise post-injury levels of one of these miRNAs (miR-125b) is essential for functional recovery, and guides correct regeneration of axons through the lesion site in a process involving the direct downstream target Sema4D in axolotls. Translating these results to a mammalian model, we increased miR-125b levels in the rat through mimic treatments following spinal cord transection. These treatments downregulated Sema4D and other glial-scar-related genes, and enhanced the animal’s functional recovery. Our study identifies a key regulatory molecule conserved between salamander and mammal, and shows that the expression of miR-125b and Sema4D must be carefully controlled in the right cells at the correct level to promote regeneration. We also show that these molecular components of the salamander’s regeneration-permissive environment can be experimentally harnessed to improve treatment outcomes for mammalian spinal cord injuries.


Materials | 2010

Electrospun biocomposite polycaprolactone/collagen tubes as scaffolds for neural stem cell differentiation

Joanne M. Hackett; ThucNhi T. Dang; Eve C. Tsai; Xudong Cao

Studies using cellular therapies, scaffolds, and tubular structured implants have been carried out with the goal to restore functional recovery after spinal cord injury (SCI). None of these therapeutic strategies, by themselves, have been shown to be sufficient to achieve complete restoration of function. To reverse the devastating effects of SCI, an interdisciplinary approach that combines materials science and engineering, stem cell biology, and neurosurgery is being carried out. We are currently investigating a scaffold that has the ability to deliver growth factors for the proliferation and differentiation of endogenous stem cells. Neural stem cells (NSCs) derived from mice are being used to assess the efficacy of the release of growth factors from the scaffold in vitro. The fabrication of the tubular implant allows a porous scaffold to be formed, which aids in the release of growth factors added to the scaffold.


Cellular and Molecular Life Sciences | 2012

Ablation of LMO4 in glutamatergic neurons impairs leptin control of fat metabolism

Xun Zhou; Mariana Gomez-Smith; Zhaohong Qin; Philippe M. Duquette; Arturo Cardenas-Blanco; Punarpreet S. Rai; Mary-Ellen Harper; Eve C. Tsai; Hymie Anisman; Hsiao-Huei Chen

The LIM domain only 4 (LMO4) protein is expressed in the hypothalamus, but its function there is not known. Using mice with LMO4 ablated in postnatal glutamatergic neurons, including most neurons of the paraventricular (PVN) and ventromedial (VMH) hypothalamic nuclei where LMO4 is expressed, we asked whether LMO4 is required for metabolic homeostasis. LMO4 mutant mice exhibited early onset adiposity. These mice had reduced energy expenditure and impaired thermogenesis together with reduced sympathetic outflow to adipose tissues. The peptide hormone leptin, produced from adipocytes, activates Jak/Stat3 signaling at the hypothalamus to control food intake, energy expenditure, and fat metabolism. Intracerebroventricular infusion of leptin suppressed feeding similarly in LMO4 mutant and control mice. However, leptin-induced fat loss was impaired and activation of Stat3 in the VMH was blunted in these mice. Thus, our study identifies LMO4 as a novel modulator of leptin function in selective hypothalamic nuclei to regulate fat metabolism.


International Journal of Obesity | 2015

Low birth weight is associated with adiposity, impaired skeletal muscle energetics and weight loss resistance in mice

Brittany Beauchamp; Sujoy Ghosh; Michael Dysart; Georges N. Kanaan; Alphonse Chu; Alexandre Blais; Karunanithi Rajamanickam; Eve C. Tsai; Mary-Elizabeth Patti; Mary-Ellen Harper

Background:In utero undernutrition is associated with obesity and insulin resistance, although its effects on skeletal muscle remain poorly defined. Therefore, in the current study we explored the effects of in utero food restriction on muscle energy metabolism in mice.Methods:We used an experimental mouse model system of maternal undernutrition during late pregnancy to examine offspring from undernourished dams (U) and control offspring from ad libitum-fed dams (C). Weight loss of 10-week-old offspring on a 4-week 40% calorie-restricted diet was also followed. Experimental approaches included bioenergetic analyses in isolated mitochondria, intact (permeabilized) muscle and at the whole body level.Results:U have increased adiposity and decreased glucose tolerance compared to C. Strikingly, when U are put on a 40% calorie-restricted diet they lose half as much weight as calorie-restricted controls. Mitochondria from muscle overall from U had decreased coupled (state 3) and uncoupled (state 4) respiration and increased maximal respiration compared to C. Mitochondrial yield was lower in U than C. In permeabilized fiber preparations from mixed fiber-type muscle, U had decreased mitochondrial content and decreased adenylate-free leak respiration, fatty acid oxidative capacity and state 3 respiratory capacity through complex I. Fiber maximal oxidative phosphorylation capacity did not differ between U and C but was decreased with calorie restriction.Conclusions:Our results reveal that in utero undernutrition alters metabolic physiology through a profound effect on skeletal muscle energetics and blunts response to a hypocaloric diet in adulthood. We propose that mitochondrial dysfunction links undernutrition in utero with metabolic disease in adulthood.

Collaboration


Dive into the Eve C. Tsai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian K. Kwon

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Henry Ahn

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel F. Dvorak

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daryl R. Fourney

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Najmedden Attabib

Saint John Regional Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge