Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eve Lapouble is active.

Publication


Featured researches published by Eve Lapouble.


Cancer Discovery | 2014

Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations

Franck Tirode; Didier Surdez; Xiaotu Ma; Matthew Parker; Marie Cécile Le Deley; Armita Bahrami; Zhaojie Zhang; Eve Lapouble; Sandrine Grossetête-Lalami; Michael Rusch; Stéphanie Reynaud; Thomas Rio-Frio; Erin Hedlund; Gang Wu; Xiang Chen; Gaëlle Pierron; Odile Oberlin; Sakina Zaidi; Gordon Lemmon; Pankaj Gupta; Bhavin Vadodaria; John Easton; Marta Gut; Li Ding; Elaine R. Mardis; Richard Wilson; Sheila A. Shurtleff; Valérie Laurence; Jean Michon; Perrine Marec-Berard

UNLABELLED Ewing sarcoma is a primary bone tumor initiated by EWSR1-ETS gene fusions. To identify secondary genetic lesions that contribute to tumor progression, we performed whole-genome sequencing of 112 Ewing sarcoma samples and matched germline DNA. Overall, Ewing sarcoma tumors had relatively few single-nucleotide variants, indels, structural variants, and copy-number alterations. Apart from whole chromosome arm copy-number changes, the most common somatic mutations were detected in STAG2 (17%), CDKN2A (12%), TP53 (7%), EZH2, BCOR, and ZMYM3 (2.7% each). Strikingly, STAG2 mutations and CDKN2A deletions were mutually exclusive, as confirmed in Ewing sarcoma cell lines. In an expanded cohort of 299 patients with clinical data, we discovered that STAG2 and TP53 mutations are often concurrent and are associated with poor outcome. Finally, we detected subclonal STAG2 mutations in diagnostic tumors and expansion of STAG2-immunonegative cells in relapsed tumors as compared with matched diagnostic samples. SIGNIFICANCE Whole-genome sequencing reveals that the somatic mutation rate in Ewing sarcoma is low. Tumors that harbor STAG2 and TP53 mutations have a particularly dismal prognosis with current treatments and require alternative therapies. Novel drugs that target epigenetic regulators may constitute viable therapeutic strategies in a subset of patients with mutations in chromatin modifiers.


Nature Genetics | 2015

Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations

Thomas F. Eleveld; Derek A. Oldridge; Virginie Bernard; Jan Koster; Leo Colmet Daage; Sharon J. Diskin; Linda Schild; Nadia Bessoltane Bentahar; Angela Bellini; Mathieu Chicard; Eve Lapouble; Valérie Combaret; Patricia Legoix-Né; Jean Michon; Trevor J. Pugh; Lori S. Hart; JulieAnn Rader; Edward F. Attiyeh; Jun S. Wei; Shile Zhang; Arlene Naranjo; Julie M. Gastier-Foster; Michael D. Hogarty; Shahab Asgharzadeh; Malcolm A. Smith; Jaime M. Guidry Auvil; Thomas B. K. Watkins; Danny A. Zwijnenburg; Marli E. Ebus; Peter van Sluis

The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway. Seven of these events were detected only in the relapse tumor, whereas the others showed clonal enrichment. In neuroblastoma cell lines, we also detected a high frequency of activating mutations in the RAS-MAPK pathway (11/18; 61%), and these lesions predicted sensitivity to MEK inhibition in vitro and in vivo. Our findings provide a rationale for genetic characterization of relapse neuroblastomas and show that RAS-MAPK pathway mutations may function as a biomarker for new therapeutic approaches to refractory disease.


Nature Genetics | 2012

Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma

Sophie Postel-Vinay; Amelie S. Veron; Franck Tirode; Gaëlle Pierron; Stéphanie Reynaud; Heinrich Kovar; Odile Oberlin; Eve Lapouble; Stelly Ballet; Carlo Lucchesi; Udo Kontny; Anna González-Neira; Piero Picci; Javier Alonso; Ana Patiño-García; Brigitte Bressac-de Paillerets; Karine Laud; Christian Dina; Philippe Froguel; Françoise Clavel-Chapelon; François Doz; Jean Michon; Stephen J. Chanock; Gilles Thomas; David G. Cox; Olivier Delattre

Ewing sarcoma, a pediatric tumor characterized by EWSR1-ETS fusions, is predominantly observed in populations of European ancestry. We performed a genome-wide association study (GWAS) of 401 French individuals with Ewing sarcoma, 684 unaffected French individuals and 3,668 unaffected individuals of European descent and living in the United States. We identified candidate risk loci at 1p36.22, 10q21 and 15q15. We replicated these loci in two independent sets of cases and controls. Joint analysis identified associations with rs9430161 (P = 1.4 × 10−20; odds ratio (OR) = 2.2) located 25 kb upstream of TARDBP, rs224278 (P = 4.0 × 10−17; OR = 1.7) located 5 kb upstream of EGR2 and, to a lesser extent, rs4924410 at 15q15 (P = 6.6 × 10−9; OR = 1.5). The major risk haplotypes were less prevalent in Africans, suggesting that these loci could contribute to geographical differences in Ewing sarcoma incidence. TARDBP shares structural similarities with EWSR1 and FUS, which encode RNA binding proteins, and EGR2 is a target gene of EWSR1-ETS. Variants at these loci were associated with expression levels of TARDBP, ADO (encoding cysteamine dioxygenase) and EGR2.


Journal of Clinical Oncology | 2014

Emergence of New ALK Mutations at Relapse of Neuroblastoma

Gudrun Schleiermacher; Niloufar Javanmardi; Virginie Bernard; Quentin Leroy; Julie Cappo; Thomas Rio Frio; Gaëlle Pierron; Eve Lapouble; Valérie Combaret; Franki Speleman; Bram De Wilde; Anna Djos; Ingrid Øra; Fredrik Hedborg; Catarina Träger; Britt-Marie Holmqvist; Jonas Abrahamsson; Michel Peuchmaur; Jean Michon; Isabelle Janoueix-Lerosey; Per Kogner; Olivier Delattre; Tommy Martinsson

PURPOSE In neuroblastoma, the ALK receptor tyrosine kinase is activated by point mutations. We investigated the potential role of ALK mutations in neuroblastoma clonal evolution. METHODS We analyzed ALK mutations in 54 paired diagnosis-relapse neuroblastoma samples using Sanger sequencing. When an ALK mutation was observed in one paired sample, a minor mutated component in the other sample was searched for by more than 100,000× deep sequencing of the relevant hotspot, with a sensitivity of 0.17%. RESULTS All nine ALK-mutated cases at diagnosis demonstrated the same mutation at relapse, in one case in only one of several relapse nodules. In five additional cases, the mutation seemed to be relapse specific, four of which were investigated by deep sequencing. In two cases, no mutation evidence was observed at diagnosis. In one case, the mutation was present at a subclonal level (0.798%) at diagnosis, whereas in another case, two different mutations resulting in identical amino acid changes were detected, one only at diagnosis and the other only at relapse. Further evidence of clonal evolution of ALK-mutated cells was provided by establishment of a fully ALK-mutated cell line from a primary sample with an ALK-mutated cell population at subclonal level (6.6%). CONCLUSION In neuroblastoma, subclonal ALK mutations can be present at diagnosis with subsequent clonal expansion at relapse. Given the potential of ALK-targeted therapy, the significant spatiotemporal variation of ALK mutations is of utmost importance, highlighting the potential of deep sequencing for detection of subclonal mutations with a sensitivity 100-fold that of Sanger sequencing and the importance of serial samplings for therapeutic decisions.


Nature Genetics | 2015

Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite

Thomas G. P. Grunewald; Virginie Bernard; Pascale Gilardi-Hebenstreit; Virginie Raynal; Didier Surdez; Marie Ming Aynaud; Olivier Mirabeau; Florencia Cidre-Aranaz; Franck Tirode; Sakina Zaidi; Gaëlle Pérot; Anneliene H. Jonker; Carlo Lucchesi; Marie Cécile Le Deley; Odile Oberlin; Perrine Marec-Berard; Amelie S. Veron; Stéphanie Reynaud; Eve Lapouble; Valentina Boeva; Thomas Rio Frio; Javier Alonso; Smita Bhatia; Gaëlle Pierron; Geraldine Cancel-Tassin; Olivier Cussenot; David G. Cox; Lindsay M. Morton; Mitchell J. Machiela; Stephen J. Chanock

Deciphering the ways in which somatic mutations and germline susceptibility variants cooperate to promote cancer is challenging. Ewing sarcoma is characterized by fusions between EWSR1 and members of the ETS gene family, usually EWSR1-FLI1, leading to the generation of oncogenic transcription factors that bind DNA at GGAA motifs. A recent genome-wide association study identified susceptibility variants near EGR2. Here we found that EGR2 knockdown inhibited proliferation, clonogenicity and spheroidal growth in vitro and induced regression of Ewing sarcoma xenografts. Targeted germline deep sequencing of the EGR2 locus in affected subjects and controls identified 291 Ewing-associated SNPs. At rs79965208, the A risk allele connected adjacent GGAA repeats by converting an interspaced GGAT motif into a GGAA motif, thereby increasing the number of consecutive GGAA motifs and thus the EWSR1-FLI1–dependent enhancer activity of this sequence, with epigenetic characteristics of an active regulatory element. EWSR1-FLI1 preferentially bound to the A risk allele, which increased global and allele-specific EGR2 expression. Collectively, our findings establish cooperation between a dominant oncogene and a susceptibility variant that regulates a major driver of Ewing sarcomagenesis.


Nature Medicine | 2017

DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma

Nathan C. Sheffield; Gaëlle Pierron; Johanna Klughammer; Paul Datlinger; Andreas Schönegger; Michael Schuster; Johanna Hadler; Didier Surdez; Delphine Guillemot; Eve Lapouble; Paul Fréneaux; Jacqueline Champigneulle; Raymonde Bouvier; Diana Walder; Ingeborg M. Ambros; Caroline Hutter; Eva Sorz; Ana Teresa Amaral; Enrique de Alava; Katharina Schallmoser; Dirk Strunk; Beate Rinner; Bernadette Liegl-Atzwanger; Berthold Huppertz; Andreas Leithner; Gonzague de Pinieux; Philippe Terrier; Valérie Laurence; Jean Michon; Ruth Ladenstein

Developmental tumors in children and young adults carry few genetic alterations, yet they have diverse clinical presentation. Focusing on Ewing sarcoma, we sought to establish the prevalence and characteristics of epigenetic heterogeneity in genetically homogeneous cancers. We performed genome-scale DNA methylation sequencing for a large cohort of Ewing sarcoma tumors and analyzed epigenetic heterogeneity on three levels: between cancers, between tumors, and within tumors. We observed consistent DNA hypomethylation at enhancers regulated by the disease-defining EWS-FLI1 fusion protein, thus establishing epigenomic enhancer reprogramming as a ubiquitous and characteristic feature of Ewing sarcoma. DNA methylation differences between tumors identified a continuous disease spectrum underlying Ewing sarcoma, which reflected the strength of an EWS-FLI1 regulatory signature and a continuum between mesenchymal and stem cell signatures. There was substantial epigenetic heterogeneity within tumors, particularly in patients with metastatic disease. In summary, our study provides a comprehensive assessment of epigenetic heterogeneity in Ewing sarcoma and thereby highlights the importance of considering nongenetic aspects of tumor heterogeneity in the context of cancer biology and personalized medicine.


Cancer Medicine | 2015

Detection of tumor ALK status in neuroblastoma patients using peripheral blood

Valérie Combaret; Isabelle Iacono; Angela Bellini; Stéphanie Bréjon; Virginie Bernard; Aurélien Marabelle; Carole Coze; Gaëlle Pierron; Eve Lapouble; Gudrun Schleiermacher; Jean Yves Blay

New protocols based on ALK‐targeted therapy by crizotinib or other ALK‐targeting molecules have opened for the treatment of patients with neuroblastoma (NB) if their tumors showed mutation and/or amplification of the ALK gene. However, tumor samples are not always available for analysis of ALK mutational status in particular at relapse. Here, we evaluated the ALK mutational status of NB samples by analysis of circulating DNA, using the droplet digital PCR (ddPCR) system. ddPCR assays was developed for the detection of ALK mutations at F1174 and R1275 hotspots found in NB tumors and was applied for the analysis of circulating DNA obtained from 200 μL of serum or plasma samples collected from 114 patients with NB. The mutations F1174L (exon 23 position 3520, T>C and position 3522, C>A) and the mutation R1275Q (exon 25 position 3824, G>A) were detected in circulating DNA. The sensitivity of our test was 100%, 85%, and 92%, respectively, and the specificity was 100%, 91%, and 98%, respectively. In conclusion, the assay that we have developed offers a reliable, noninvasive blood test to assess ALK mutational status at F1174 and R1275 hotspots and should help clinicians to identify patients showing an ALK mutation in particular when no tumor tissue is available.


Nature Genetics | 2017

Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries

Valentina Boeva; Caroline Louis-Brennetot; Agathe Peltier; Simon Durand; Cécile Pierre-Eugène; Virginie Raynal; Heather Etchevers; Sophie Thomas; Alban Lermine; Estelle Daudigeos-Dubus; Birgit Geoerger; Martin F. Orth; Thomas G. P. Grunewald; Elise Diaz; Bertrand Ducos; Didier Surdez; Angel M. Carcaboso; Irina Medvedeva; Thomas Deller; Valérie Combaret; Eve Lapouble; Gaëlle Pierron; Sandrine Grossetête-Lalami; Sylvain Baulande; Gudrun Schleiermacher; Emmanuel Barillot; Hermann Rohrer; Olivier Delattre; Isabelle Janoueix-Lerosey

Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.


Clinical Cancer Research | 2016

Genomic copy number profiling using circulating free tumor DNA highlights heterogeneity in neuroblastoma.

Mathieu Chicard; Sandrine Boyault; Leo Colmet Daage; Wilfrid Richer; David Gentien; Gaëlle Pierron; Eve Lapouble; Angela Bellini; Nathalie Clément; Isabelle Iacono; Stéphanie Bréjon; Marjorie Carrère; Cecile Reyes; Toby Hocking; Virginie Bernard; Michel Peuchmaur; Nadège Corradini; Cécile Faure-Conter; Carole Coze; Dominique Plantaz; Anne Sophie Defachelles; Estelle Thebaud; Marion Gambart; Frédéric Millot; Dominique Valteau-Couanet; Jean Michon; Alain Puisieux; Olivier Delattre; Valérie Combaret; Gudrun Schleiermacher

Purpose: The tumor genomic copy number profile is of prognostic significance in neuroblastoma patients. We have studied the genomic copy number profile of cell-free DNA (cfDNA) and compared this with primary tumor arrayCGH (aCGH) at diagnosis. Experimental Design: In 70 patients, cfDNA genomic copy number profiling was performed using the OncoScan platform. The profiles were classified according to the overall pattern, including numerical chromosome alterations (NCA), segmental chromosome alterations (SCA), and MYCN amplification (MNA). Results: Interpretable and dynamic cfDNA profiles were obtained in 66 of 70 and 52 of 70 cases, respectively. An overall identical genomic profile between tumor aCGH and cfDNA was observed in 47 cases (3 NCAs, 22 SCAs, 22 MNAs). In one case, cfDNA showed an additional SCA not detected by tumor aCGH. In 4 of 8 cases with a silent tumor aCGH profile, cfDNA analysis revealed a dynamic profile (3 SCAs, 1 NCA). In 14 cases, cfDNA analysis did not reveal any copy number changes. A total of 378 breakpoints common to the primary tumor and cfDNA of any given patient were identified, 27 breakpoints were seen by tumor aCGH, and 54 breakpoints were seen in cfDNA only, including two cases with interstitial IGFR1 gains and two alterations targeting TERT. Conclusions: These results demonstrate the feasibility of cfDNA copy number profiling in neuroblastoma patients, with a concordance of the overall genomic profile in aCGH and cfDNA dynamic cases of 97% and a sensitivity of 77%, respectively. Furthermore, neuroblastoma heterogeneity is highlighted, suggesting that cfDNA might reflect genetic alterations of more aggressive cell clones. Clin Cancer Res; 22(22); 5564–73. ©2016 AACR. See related commentary by Janku and Kurzrock, p. 5400


Clinical Cancer Research | 2015

Deep Sequencing Reveals Occurrence of Subclonal ALK Mutations in Neuroblastoma at Diagnosis

Angela Bellini; Virginie Bernard; Quentin Leroy; Thomas Rio Frio; Gaëlle Pierron; Valérie Combaret; Eve Lapouble; Nathalie Clément; Hervé Rubie; Estelle Thebaud; Pascal Chastagner; Anne Sophie Defachelles; Christophe Bergeron; Nimrod Buchbinder; Sophie Taque; Anne Auvrignon; Dominique Valteau-Couanet; Jean Michon; Isabelle Janoueix-Lerosey; Olivier Delattre; Gudrun Schleiermacher

Purpose: In neuroblastoma, activating ALK receptor tyrosine kinase point mutations play a major role in oncogenesis. We explored the potential occurrence of ALK mutations at a subclonal level using targeted deep sequencing. Experimental Design: In a clinically representative series of 276 diagnostic neuroblastoma samples, exons 23 and 25 of the ALK gene, containing the F1174 and R1275 mutation hotspots, respectively, were resequenced with an extremely high depth of coverage. Results: At the F1174 hotspot (exon 23), mutations were observed in 15 of 277 samples (range of fraction of mutated allele per sample: 0.562%–40.409%). At the R1275 hotspot (exon 25), ALK mutations were detected in 12 of 276 samples (range of fraction of mutated allele: 0.811%–73.001%). Altogether, subclonal events with a mutated allele fraction below 20% were observed in 15/27 ALK-mutated samples. The presence of an ALK mutation was associated with poorer 5-year overall survival (OS: 75% vs. 57%, P = 0.0212 log-rank test), with a strong correlation between F1174 ALK mutations and MYCN amplification being observed. Conclusions: In this series, deep sequencing allows the detection of F1174 and R1275 ALK mutational events at diagnosis in 10% of cases, with subclonal events in more than half of these, which would have gone undetected by Sanger sequencing. These findings are of clinical importance given the potential role of ALK mutations in clonal evolution and relapse. These findings also demonstrate the importance of deep sequencing techniques for the identification of patients especially when considering targeted therapy. Clin Cancer Res; 21(21); 4913–21. ©2015 AACR. See related commentary by George, p. 4747

Collaboration


Dive into the Eve Lapouble's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge