Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eve-Marie Josse is active.

Publication


Featured researches published by Eve-Marie Josse.


Current Biology | 2005

Cold and light control seed germination through the bHLH transcription factor SPATULA

Steven Penfield; Eve-Marie Josse; Rubini Kannangara; Alison D. Gilday; Karen J. Halliday; Ian A. Graham

BACKGROUND Plants integrate signals from the environment and use these to modify the timing of development according to seasonal cues. Seed germination is a key example of this phenomenon and in Arabidopsis is promoted by the synergistic interaction of light and low temperatures in dormant seeds. This signaling pathway is known to converge on the regulation of the gibberellin (GA) biosynthetic genes GA3 oxidase (GA3ox), whose expression is transcriptionally induced by light and cold in imbibed seeds. However, the molecular basis of this response has until now been unknown. RESULTS Here we show that the bHLH transcription factor SPATULA is a light-stable repressor of seed germination and mediates the germination response to temperature. Furthermore, SPT is required in dormant seeds for maintaining the repression of GA3ox transcription. We also show that the related protein PIL5 represses seed germination and GA3ox expression in the dark. CONCLUSIONS We conclude that SPT and PIL5 form part of a regulatory network coupling seed germination and GA3ox expression to light and temperature signaling in the seed.


Cold Spring Harbor Perspectives in Biology | 2009

Integration of light and auxin signaling

Karen J. Halliday; Jaime F. Martínez-García; Eve-Marie Josse

Light is vital for plant growth and development: It provides energy for photosynthesis, but also reliable information on seasonal timing and local habitat conditions. Light sensing is therefore of paramount importance for plants. Thus, plants have evolved sophisticated light receptors and signaling networks that detect and respond to changes in light intensity, duration, and spectral quality. Environmental light signals can drive developmental transitions such as germination and flowering, but they also continuously shape development to allow adaptation to the local habitat and microclimate. The ability to respond to a changing and sometimes unfavorable environment underlies the huge success of plants. Much of this growth and developmental plasticity is achieved by light modulation of auxin signaling systems. In this article, we examine the connections between light and auxin that elicit local responses, long distance signaling, and coordinated growth between the shoot and root.


The Plant Cell | 2011

A DELLA in Disguise: SPATULA Restrains the Growth of the Developing Arabidopsis Seedling

Eve-Marie Josse; Yinbo Gan; Jordi Bou-Torrent; Kelly Stewart; Alison D. Gilday; C. E. Jeffree; Fabián E. Vaistij; Jaime F. Martínez-García; Ferenc Nagy; Ian A. Graham; Karen J. Halliday

This study examines the role of the PHYTOCHROME INTERACTING FACTOR3 homolog SPATULA (SPT) in the control of the developing seedling and shows that SPT is a potent regulator of cotyledon size, acting in parallel to DELLAs. As DELLAs negatively regulate SPT abundance, the light regulation of DELLAs drives the DELLA-SPT counterbalance, enforcing growth restraint across a range of ambient light conditions that are prevalent in nature. The period following seedling emergence is a particularly vulnerable stage in the plant life cycle. In Arabidopsis thaliana, the phytochrome-interacting factor (PIF) subgroup of basic-helix-loop-helix transcription factors has a pivotal role in regulating growth during this early phase, integrating environmental and hormonal signals. We previously showed that SPATULA (SPT), a PIF homolog, regulates seed dormancy. In this article, we establish that unlike PIFs, which mainly promote hypocotyl elongation, SPT is a potent regulator of cotyledon expansion. Here, SPT acts in an analogous manner to the gibberellin-dependent DELLAs, REPRESSOR OF GA1-3 and GIBBERELLIC ACID INSENSITIVE, which restrain cotyledon expansion alongside SPT. However, although DELLAs are not required for SPT action, we demonstrate that SPT is subject to negative regulation by DELLAs. Cross-regulation of SPT by DELLAs ensures that SPT protein levels are limited when DELLAs are abundant but rise following DELLA depletion. This regulation provides a means to prevent excessive growth suppression that would result from the dual activity of SPT and DELLAs, yet maintain growth restraint under DELLA-depleted conditions. We present evidence that SPT and DELLAs regulate common gene targets and illustrate that the balance of SPT and DELLA action depends on light quality signals in the natural environment.


Plant Journal | 2011

Light receptor action is critical for maintaining plant biomass at warm ambient temperatures

Julia Foreman; Henrik Johansson; Patricia Hornitschek; Eve-Marie Josse; Christian Fankhauser; Karen J. Halliday

The ability to withstand environmental temperature variation is essential for plant survival. Former studies in Arabidopsis revealed that light signalling pathways had a potentially unique role in shielding plant growth and development from seasonal and daily fluctuations in temperature. In this paper we describe the molecular circuitry through which the light receptors cry1 and phyB buffer the impact of warm ambient temperatures. We show that the light signalling component HFR1 acts to minimise the potentially devastating effects of elevated temperature on plant physiology. Light is known to stabilise levels of HFR1 protein by suppressing proteasome-mediated destruction of HFR1. We demonstrate that light-dependent accumulation and activity of HFR1 are highly temperature dependent. The increased potency of HFR1 at warmer temperatures provides an important restraint on PIF4 that drives elongation growth. We show that warm ambient temperatures promote the accumulation of phosphorylated PIF4. However, repression of PIF4 activity by phyB and cry1 (via HFR1) is critical for controlling growth and maintaining physiology as temperatures rise. Loss of this light-mediated restraint has severe consequences for adult plants which have greatly reduced biomass.


Plant Molecular Biology | 2010

A role for an alternative splice variant of PIF6 in the control of Arabidopsis primary seed dormancy

Steven Penfield; Eve-Marie Josse; Karen J. Halliday

Phytochrome interacting factor (PIF) transcription factors have been shown to be important in the regulation of seed dormancy and germination by environmental cues. Many PIF-family transcription factors are expressed in seeds but only PIF1 and SPATULA (SPT) have been tested for a role in germination control. Here we show that PIF6 is expressed strongly during seed development, and that two splice variants exist, one full length (the α form), and a second, the β form, in which a cryptic intron containing the potential DNA binding domain is spliced out, predicted to lead to the generation of a premature stop codon. Loss of PIF6 increases primary seed dormancy, whereas overexpression of the β form, but not the α form, reduce dormancy. Our data show the potential for natural splice variants of PIF transcription factors to be important in the evolution of the control of environmental signalling in plants.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA.

Fabián E. Vaistij; Yinbo Gan; Steven Penfield; Alison D. Gilday; Anuja Dave; Zhesi He; Eve-Marie Josse; Giltsu Choi; Karen J. Halliday; Ian A. Graham

Freshly matured seeds exhibit primary dormancy, which prevents germination until environmental conditions are favorable. The establishment of dormancy occurs during seed development and involves both genetic and environmental factors that impact on the ratio of two antagonistic phytohormones: abscisic acid (ABA), which promotes dormancy, and gibberellic acid, which promotes germination. Although our understanding of dormancy breakage in mature seeds is well advanced, relatively little is known about the mechanisms involved in establishing dormancy during seed maturation. We previously showed that the SPATULA (SPT) transcription factor plays a key role in regulating seed germination. Here we investigate its role during seed development and find that, surprisingly, it has opposite roles in setting dormancy in Landsberg erecta and Columbia Arabidopsis ecotypes. We also find that SPT regulates expression of five transcription factor encoding genes: ABA-INSENSITIVE4 (ABI4) and ABI5, which mediate ABA signaling; REPRESSOR-OF-GA (RGA) and RGA-LIKE3 involved in gibberellic acid signaling; and MOTHER-OF-FT-AND-TFL1 (MFT) that we show here promotes Arabidopsis seed dormancy. Although ABI4, RGA, and MFT are repressed by SPT, ABI5 and RGL3 are induced. Furthermore, we show that RGA, MFT, and ABI5 are direct targets of SPT in vivo. We present a model in which SPT drives two antagonistic “dormancy-repressing” and “dormancy-promoting” routes that operate simultaneously in freshly matured seeds. Each of these routes has different impacts and this in turn explains the opposite effect of SPT on seed dormancy of the two ecotypes analyzed here.


Current Biology | 2010

SPATULA Links Daytime Temperature and Plant Growth Rate

Kate Sidaway-Lee; Eve-Marie Josse; Alanna Brown; Yinbo Gan; Karen J. Halliday; Ian A. Graham; Steven Penfield

Plants exhibit a wide variety of growth rates that are known to be determined by genetic and environmental factors, and different plants grow optimally at different temperatures, indicating that this is a genetically determined character. Moderate decreases in ambient temperature inhibit vegetative growth, but the mechanism is poorly understood, although a decrease in gibberellin (GA) levels is known to be required. Here we demonstrate that the basic helix-loop-helix transcription factor SPATULA (SPT), previously known to be a regulator of low temperature-responsive germination, mediates the repression of growth by cool daytime temperatures but has little or no growth-regulating role under warmer conditions. We show that only daytime temperatures affect vegetative growth and that SPT couples morning temperature to growth rate. In seedlings, warm temperatures inhibit the accumulation of the SPT protein, and SPT autoregulates its own transcript abundance in conjunction with diurnal effects. Genetic data show that repression of growth by SPT is independent of GA signaling and phytochrome B, as previously shown for PIF4. Our data suggest that SPT integrates time of day and temperature signaling to control vegetative growth rate.


Plant Cell and Environment | 2008

Paths through the phytochrome network.

Eve-Marie Josse; Julia Foreman; Karen J. Halliday

Since the discovery of the physical interaction between phytochrome B and the basic helix-loop-helix (bHLH) transcription factor (TF) PIF3 a decade ago, plant phytochrome-signalling research has largely focused on understanding the mechanisms through which phytochromes and members of this bHLH family signal. This concerted effort has revealed how phytochrome and bHLH TF control gene expression and plant growth, and has assigned precise roles to a number of genes in the PIF3-like bHLH TF clade. This work has focused largely on cell autonomous signalling events; however, to synchronize plant growth and developmental events at the tissue and organ level, temporal and spatial signal integration is crucial. This review brings together current knowledge of phytochrome signalling through phytochrome-interacting factors (PIFs)/phytochrome-interacting factor-like (PILs), and it evaluates the current evidence for cross-tissue signal integration.


Current Biology | 2008

Skotomorphogenesis: the dark side of light signalling

Eve-Marie Josse; Karen J. Halliday

The ability to switch from skotomorphogenic to photomorphogenic development is essential for seedling survival. Central to this mechanism are the phytochrome interacting factors that are important for maintaining the skotomorphogenic state and regulating the switch to photomorphogenesis.


Plant Signaling & Behavior | 2011

Shedding light on flower development: Phytochrome B regulates gynoecium formation in association with the transcription factor SPATULA

Julia Foreman; James N White; Ian A. Graham; Karen J. Halliday; Eve-Marie Josse

Accurate development of the gynoecium, the female reproductive organ, is necessary to achieve efficient fertilization. In Arabidopsis, the correct patterning of the apical-basal axis of the gynoecium requires the establishment of a morphogenic gradient of auxin. This allows the production of specialized tissues, whose roles consist of attracting pollen, allowing pollen tube growth and protecting the ovules within the ovaries. Mutations in the bHLH transcription factor SPATULA (SPT) are known to impair the development of the apical tissues of the gynoecium. Here, we show that the spt phenotype is rescued by the removal of phytochrome B, and discuss how light signaling may control flower development.

Collaboration


Dive into the Eve-Marie Josse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge