Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evelien M. te Poele is active.

Publication


Featured researches published by Evelien M. te Poele.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2008

Actinomycete integrative and conjugative elements

Evelien M. te Poele; Henk Bolhuis; Lubbert Dijkhuizen

This paper reviews current knowledge on actinomycete integrative and conjugative elements (AICEs). The best characterised AICEs, pSAM2 of Streptomyces ambofaciens (10.9 kb), SLP1 (17.3 kb) of Streptomyces coelicolor and pMEA300 of Amycolatopsis methanolica (13.3 kb), are present as integrative elements in specific tRNA genes, and are capable of conjugative transfer. These AICEs have a highly conserved structural organisation, with functional modules for excision/integration, replication, conjugative transfer, and regulation. Recently, it has been shown that pMEA300 and the related elements pMEA100 of Amycolatopsis mediterranei and pSE211 of Saccharopolyspora erythraea form a novel group of AICEs, the pMEA-elements, based on the unique characteristics of their replication initiator protein RepAM. Evaluation of a large collection of Amycolatopsis isolates has allowed identification of multiple pMEA-like elements. Our data show that, as AICEs, they mainly coevolved with their natural host in an integrated form, rather than being dispersed via horizontal gene transfer. The pMEA-like elements could be separated into two distinct populations from different geographical origins. One group was most closely related to pMEA300 and was found in isolates from Australia and Asia and pMEA100-related sequences were present in European isolates. Genome sequence data have enormously contributed to the recent insight that AICEs are present in many actinomycete genera. The sequence data also provide more insight into their evolutionary relationships, revealing their modular composition and their likely combined descent from bacterial plasmids and bacteriophages. Evidence is accumulating that AICEs act as modulators of host genome diversity and are also involved in the acquisition of secondary metabolite clusters and foreign DNA via horizontal gene transfer. Although still speculative, these AICEs may play a role in the spread of antibiotic resistance factors into pathogenic bacteria. The novel insights on AICE characteristics presented in this review may be used for the effective construction of new vectors that allows us to engineer and optimise strains for the production of commercially and medically interesting secondary metabolites, and bioactive proteins.


Plasmid | 2008

Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded

Evelien M. te Poele; Markiyan Samborskyy; Markiyan Oliynyk; Peter F. Leadlay; Henk Bolhuis; Lubbert Dijkhuizen

Actinomycete integrative and conjugative elements (AICEs) are present in diverse genera of the actinomycetes, the most important bacterial producers of bioactive secondary metabolites. Comparison of pMEA100 of Amycolatopsis mediterranei, pMEA300 of Amycolatopsis methanolica and pSE211 of Saccharopolyspora erythraea, and other AICEs, revealed a highly conserved structural organisation, consisting of four functional modules (replication, excision/integration, regulation, and conjugative transfer). Features conserved in all elements, or specific for a single element, are discussed and analysed. This study also revealed two novel putative AICEs (named pSE222 and pSE102) in the Sac. erythraea genome, related to the previously described pSE211 and pSE101 elements. Interestingly, pSE102 encodes a putative aminoglycoside phosphotransferase which may confer antibiotic resistance to the host. Furthermore, two of the six pSAM2-like insertions in the Streptomyces coelicolor genome described by Bentley et al. [Bentley, S.D., Chater, K.F., Cerdeno-Tarraga, A.M., et al., 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141-147] could be functional AICEs. Homologues of various AICE proteins were found in other actinomycetes, in Frankia species and in the obligate marine genus Salinispora and may be part of novel AICEs as well. The data presented provide a better understanding of the origin and evolution of these elements, and their functional properties. Several AICEs are able to mobilise chromosomal markers, suggesting that they play an important role in horizontal gene transfer and spread of antibiotic resistance, but also in evolution of genome plasticity.


Frontiers in Microbiology | 2017

3-Hydroxybenzoate 6-Hydroxylase from Rhodococcus jostii RHA1 Contains a Phosphatidylinositol Cofactor

S. Montersino; Evelien M. te Poele; Roberto Orru; Adrie H. Westphal; Arjan Barendregt; Albert J. R. Heck; Robert van der Geize; Lubbert Dijkhuizen; Andrea Mattevi; Willem J. H. van Berkel

3-Hydroxybenzoate 6-hydroxylase (3HB6H, EC 1.13.14.26) is a FAD-dependent monooxygenase involved in the catabolism of aromatic compounds in soil microorganisms. 3HB6H is unique among flavoprotein hydroxylases in that it harbors a phospholipid ligand. The purified protein obtained from expressing the gene encoding 3HB6H from Rhodococcus jostii RHA1 in the host Escherichia coli contains a mixture of phosphatidylglycerol and phosphatidylethanolamine, which are the major constituents of E. coli’s cytoplasmic membrane. Here, we purified 3HB6H (RjHB6H) produced in the host R. jostii RHA#2 by employing a newly developed actinomycete expression system. Biochemical and biophysical analysis revealed that Rj3HB6H possesses similar catalytic and structural features as 3HB6H, but now contains phosphatidylinositol, which is a specific constituent of actinomycete membranes. Native mass spectrometry suggests that the lipid cofactor stabilizes monomer-monomer contact. Lipid analysis of 3HB6H from Pseudomonas alcaligenes NCIMB 9867 (Pa3HB6H) produced in E. coli supports the conclusion that 3HB6H enzymes have an intrinsic ability to bind phospholipids with different specificity, reflecting the membrane composition of their bacterial host.


Applied Microbiology and Biotechnology | 2016

Glucansucrase Gtf180-ΔN of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules

Tim Devlamynck; Evelien M. te Poele; Xiangfeng Meng; Sander S. van Leeuwen; Lubbert Dijkhuizen

Glucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of α-glucan polysaccharides from sucrose, and this strongly impedes the efficient glycosylation of non-carbohydrate molecules and complicates downstream processing of glucosylated products. This paper reports that suppressing α-glucan synthesis by mutational engineering of the Gtf180-ΔN enzyme of Lactobacillus reuteri 180 results in the construction of more efficient glycosylation biocatalysts. Gtf180-ΔN mutants (L938F, L981A, and N1029M) with an impaired α-glucan synthesis displayed a substantial increase in monoglycosylation yields for several phenolic and alcoholic compounds. Kinetic analysis revealed that these mutants possess a higher affinity for the model acceptor substrate catechol but a lower affinity for its mono-α-d-glucoside product, explaining the improved monoglycosylation yields. Analysis of the available high resolution 3D crystal structure of the Gtf180-ΔN protein provided a clear understanding of how mutagenesis of residues L938, L981, and N1029 impaired α-glucan synthesis, thus yielding mutants with an improved glycosylation potential.


Advances in Carbohydrate Chemistry and Biochemistry | 2016

Stevia Glycosides: Chemical and Enzymatic Modifications of Their Carbohydrate Moieties to Improve the Sweet-Tasting Quality

Gerrit J. Gerwig; Evelien M. te Poele; Lubbert Dijkhuizen; Johannis P. Kamerling

Stevia glycosides, extracted from the leaves of the plant Stevia rebaudiana Bertoni, display an amazing high degree of sweetness. As processed plant products, they are considered as excellent bio-alternatives for sucrose and artificial sweeteners. Being noncaloric and having beneficial properties for human health, they are the subject of an increasing number of studies for applications in food and pharmacy. However, one of the main obstacles for the successful commercialization of Stevia sweeteners, especially in food, is their slight bitter aftertaste and astringency. These undesirable properties may be reduced or eliminated by modifying the carbohydrate moieties of the steviol glycosides. A promising procedure is to subject steviol glycosides to enzymatic glycosylation, thereby introducing additional monosaccharide residues into the molecules. Depending on the number and positions of the monosaccharide units, the taste quality and sweetness potency of the compounds will vary. Many studies have been performed already, and this review summarizes the structures of native steviol glycosides and the recent data of modifications of the carbohydrate moieties that have been published to provide an overview of the current progress.


Bioconjugate Chemistry | 2016

Glucosylation of catechol with the GTFA glucansucrase enzyme from Lactobacillus reuteri and sucrose as donor substrate

Evelien M. te Poele; Pieter Grijpstra; Sander S. van Leeuwen; Lubbert Dijkhuizen

Lactic acid bacteria use glucansucrase enzymes for synthesis of gluco-oligosaccharides and polysaccharides (α-glucans) from sucrose. Depending on the glucansucrase enzyme, specific α-glucosidic linkages are introduced. GTFA-ΔN (N-terminally truncated glucosyltransferase A) is a glucansucrase enzyme of Lactobacillus reuteri 121 that synthesizes the reuteran polysaccharide with (α1 → 4) and (α1 → 6) glycosidic linkages. Glucansucrases also catalyze glucosylation of various alternative acceptor substrates. At present it is unclear whether the linkage specificity of these enzymes is the same in oligo/polysaccharide synthesis and in glucosylation of alternative acceptor substrates. Our results show that GTFA-ΔN glucosylates catechol into products with up to at least 5 glucosyl units attached. These catechol glucosides were isolated and structurally characterized using 1D/2D (1)H NMR spectroscopy. They contained 1 to 5 glucose units with different (α1 → 4) and (α1 → 6) glycosidic linkage combinations. Interestingly, a branched catechol glucoside was also formed along with a catechol glucoside with 2 successive (α1 → 6) glycosidic linkages, products that are absent when only sucrose is used as both glycosyl donor and acceptor substrate.


Scientific Reports | 2018

Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste

Evelien M. te Poele; Tim Devlamynck; Manuel Jäger; Gerrit J. Gerwig; Davy Van de Walle; Koen Dewettinck; Anna K. H. Hirsch; Johannis P. Kamerling; Wim Soetaert; Lubbert Dijkhuizen

Steviol glycosides from the leaves of the plant Stevia rebaudiana are high-potency natural sweeteners but suffer from a lingering bitterness. The Lactobacillus reuteri 180 wild-type glucansucrase Gtf180-ΔN, and in particular its Q1140E-mutant, efficiently α-glucosylated rebaudioside A (RebA), using sucrose as donor substrate. Structural analysis of the products by MALDI-TOF mass spectrometry, methylation analysis and NMR spectroscopy showed that both enzymes exclusively glucosylate the Glc(β1→C-19 residue of RebA, with the initial formation of an (α1→6) linkage. Docking of RebA in the active site of the enzyme revealed that only the steviol C-19 β-D-glucosyl moiety is available for glucosylation. Response surface methodology was applied to optimize the Gtf180-ΔN-Q1140E-catalyzed α-glucosylation of RebA, resulting in a highly productive process with a RebA conversion of 95% and a production of 115 g/L α-glucosylated products within 3 h. Development of a fed-batch reaction allowed further suppression of α-glucan synthesis which improved the product yield to 270 g/L. Sensory analysis by a trained panel revealed that glucosylated RebA products show a significant reduction in bitterness, resulting in a superior taste profile compared to RebA. The Gtf180-ΔN-Q1140E glucansucrase mutant enzyme thus is an efficient biocatalyst for generating α-glucosylated RebA variants with improved edulcorant/organoleptic properties.


Food Chemistry | 2019

Trans-α-glucosylation of stevioside by the mutant glucansucrase enzyme Gtf180-ΔN-Q1140E improves its taste profile

Tim Devlamynck; Evelien M. te Poele; Koen Quataert; Gerrit J. Gerwig; Davy Van de Walle; Koen Dewettinck; Johannis P. Kamerling; Wim Soetaert; Lubbert Dijkhuizen

The adverse health effects of sucrose overconsumption, typical for diets in developed countries, necessitate use of low-calorie sweeteners. Following approval by the European Commission (2011), steviol glycosides are increasingly used as high-intensity sweeteners in food. Stevioside is the most prevalent steviol glycoside in Stevia rebaudiana plant leaves, but it has found limited applications in food products due to its lingering bitterness. Enzymatic glucosylation is a strategy to reduce stevioside bitterness, but reported glucosylation reactions suffer from low productivities. Here we present the optimized and efficient α-glucosylation of stevioside using the mutant glucansucrase Gtf180-ΔN-Q1140E and sucrose as donor substrate. Structures of novel products were elucidated by NMR spectroscopy, mass spectrometry and methylation analysis; stevioside was mainly glucosylated at the steviol C-19 glucosyl moiety. Sensory analysis of the α-glucosylated stevioside products by a trained panel revealed a significant reduction in bitterness compared to stevioside, resulting in significant improvement of edulcorant/organoleptic properties.


Environmental Microbiology | 2004

Isolation and cultivation of Walsby's square archaeon

Henk Bolhuis; Evelien M. te Poele; Francisco Rodriguez-Valera


Applied Microbiology and Biotechnology | 2015

Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme

Harini Venkataraman; Evelien M. te Poele; Kamila Z. Rosłoniec; Nico P. E. Vermeulen; Jan N. M. Commandeur; Robert van der Geize; Lubbert Dijkhuizen

Collaboration


Dive into the Evelien M. te Poele's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge