Evelina Chieregatti
Istituto Italiano di Tecnologia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evelina Chieregatti.
Journal of Clinical Investigation | 1996
Grazia Tripodi; Flavia Valtorta; Lucia Torielli; Evelina Chieregatti; Sergio Salardi; Livio Trusolino; Andrea Menegon; Patrizia Ferrari; Pier-Carlo Marchisio; Giuseppe Bianchi
The adducin heterodimer is a protein affecting the assembly of the actin-based cytoskeleton. Point mutations in rat adducin alpha (F316Y) and beta (Q529R) subunits are involved in a form of rat primary hypertension (MHS) associated with faster kidney tubular ion transport. A role for adducin in human primary hypertension has also been suggested. By studying the interaction of actin with purified normal and mutated adducin in a cell-free system and the actin assembly in rat kidney epithelial cells (NRK-52E) transfected with mutated rat adducin cDNA, we show that the adducin isoforms differentially modulate: (a) actin assembly both in a cell-free system and within transfected cells; (b) topography of alpha V integrin together with focal contact proteins; and (c) Na-K pump activity at V(max) (faster with the mutated isoforms, 1281 +/- 90 vs 841 +/- 30 nmol K/h.mg pt., P < 0.0001). This co-modulation suggests a role for adducin in the constitutive capacity of the epithelia both to transport ions and to expose adhesion molecules. These findings may also lead to the understanding of the relation between adducin polymorphism and blood pressure and to the development of new approaches to the study of hypertension-associated organ damage.
Communicative & Integrative Biology | 2010
Serena Bellani; Vítor L. Sousa; Giuseppe Ronzitti; Flavia Valtorta; Jacopo Meldolesi; Evelina Chieregatti
The cytosolic protein α-synuclein is enriched at the pre-synaptic terminals of almost all types of neurons in the central nervous system. α-Synuclein overexpression and the expression of three different mutants have been shown to sustain the pathogenesis of selected forms of Parkinson’s disease. The localization of the protein and the defects found in knocked out or transgenic animals suggest a role of α-synuclein in the regulation of synaptic efficiency. However, the precise function of the protein and the molecular mechanisms of its action are still unclear. At synapses the synaptic vesicle release cycle is a finely tuned process composed of sequential steps that require the interconnected participation of several proteins and cytoskeletal elements. Actin microfilaments are required for the regulation of synaptic vesicle mobilization between different functional pools, for their organization at the active zone and influence the exocytotic process. We recently identified actin as a possible target of α-synuclein function. Through its binding to actin and the regulation of actin dynamics, α-synuclein could participate in the tuning of the vesicle release process, thereby modulating synaptic function and plasticity.
Molecular Biology of the Cell | 2009
Vítor L. Sousa; Serena Bellani; Maila Giannandrea; Malikmohamed Yousuf; Flavia Valtorta; Jacopo Meldolesi; Evelina Chieregatti
The function of alpha-synuclein, a soluble protein abundant in the brain and concentrated at presynaptic terminals, is still undefined. Yet, alpha-synuclein overexpression and the expression of its A30P mutant are associated with familial Parkinsons disease. Working in cell-free conditions, in two cell lines as well as in primary neurons we demonstrate that alpha-synuclein and its A30P mutant have different effects on actin polymerization. Wild-type alpha-synuclein binds actin, slows down its polymerization and accelerates its depolymerization, probably by monomer sequestration; A30P mutant alpha-synuclein increases the rate of actin polymerization and disrupts the cytoskeleton during reassembly of actin filaments. Consequently, in cells expressing mutant alpha-synuclein, cytoskeleton-dependent processes, such as cell migration, are inhibited, while exo- and endocytic traffic is altered. In hippocampal neurons from mice carrying a deletion of the alpha-synuclein gene, electroporation of wild-type alpha-synuclein increases actin instability during remodeling, with growth of lamellipodia-like structures and apparent cell enlargement, whereas A30P alpha-synuclein induces discrete actin-rich foci during cytoskeleton reassembly. In conclusion, alpha-synuclein appears to play a major role in actin cytoskeletal dynamics and various aspects of microfilament function. Actin cytoskeletal disruption induced by the A30P mutant might alter various cellular processes and thereby play a role in the pathogenesis of neurodegeneration.
Neuropsychopharmacology | 2015
Stefano Espinoza; Gabriele Lignani; Lucia Caffino; Silvia Maggi; Ilya Sukhanov; Damiana Leo; Liudmila Mus; Marco Emanuele; Giuseppe Ronzitti; Anja Harmeier; Lucian Medrihan; Tatyana D. Sotnikova; Evelina Chieregatti; Marius C. Hoener; Fabio Benfenati; Valter Tucci; Fabio Fumagalli; Raul R. Gainetdinov
Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions.
The EMBO Journal | 2006
Anna Lorusso; Cesare Covino; Giuseppina Priori; Angela Bachi; Jacopo Meldolesi; Evelina Chieregatti
Enlargeosomes are small cytoplasmic vesicles that undergo rapid, Ca2+‐dependent exo/endocytosis. The role of the cytoskeleton in these processes was unknown. In PC12‐27 cells, microtubule disassembly had little effect on enlargeosomes, whereas microfilament disassembly increased markedly both their resting and stimulated exocytosis, and inhibited their endocytosis. Even at rest enlargeosomes are coated at their cytosolic surface by an actin‐associated protein, annexin2, bound by a dual, Ca2+‐dependent and Ca2+‐independent mechanism. In contrast, the other enlargeosome marker, desmoyokin/Ahnak, is transported across the organelle membrane, apparently by an ABC transporter, and binds to its lumenal face. Annexin2‐GFP expression revealed that, upon stimulation, the slow and random enlargeosome movement increases markedly and becomes oriented toward the plasma membrane. After annexin2 downregulation enlargeosome exocytosis induced by both [Ca2+]i rise and cytoskeleton disruption is inhibited, and the NGF‐induced differentiation is blocked. Binding of annexin2 to the enlargeosome membrane, the most extensive ever reported (>50% annexin2 bound to ∼3% of total membrane area), seems therefore to participate in the regulation of their exocytosis.
Neuropharmacology | 2015
Stefano Espinoza; Valentina Ghisi; Marco Emanuele; Damiana Leo; Ilya Sukhanov; Tatiana D. Sotnikova; Evelina Chieregatti; Raul R. Gainetdinov
Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor (GPCR) known to modulate dopaminergic system through several mechanisms. Mice lacking this receptor show a higher sensitivity to dopaminergic stimuli, such as amphetamine; however, it is not clear whether D1 or D2 dopamine receptors and which associated intracellular signaling events are involved in this modulation. In the striatum of TAAR1 knock out (TAAR1-KO mice) we found that D2, but not D1, dopamine receptors were over-expressed, both in terms of mRNA and protein levels. Moreover, the D2 dopamine receptor-related G protein-independent AKT/GSK3 signaling pathway was selectively activated, as indicated by the decrease of phosphorylation of AKT and GSK3β. The decrease in phospho-AKT levels, suggesting an increase in D2 dopamine receptor activity in basal conditions, was associated with an increase of AKT/PP2A complex, as revealed by co-immunoprecipitation experiments. Finally, we found that the locomotor activation induced by the D2 dopamine receptor agonist quinpirole, but not by the full D1 dopamine receptor agonist SKF-82958, was increased in TAAR1-KO mice. These data demonstrate pronounced supersensitivity of postsynaptic D2 dopamine receptors in the striatum of TAAR1-KO mice and indicate that a close interaction of TAAR1 and D2 dopamine receptors at the level of postsynaptic structures has important functional consequences.
Scientific Reports | 2011
Francesco Difato; Hanako Tsushima; Mattia Pesce; Fabio Benfenati; Axel Blau; Evelina Chieregatti
During development, axons of neurons in the mammalian central nervous system lose their ability to regenerate. To study the regeneration process, axons of mouse hippocampal neurons were partially damaged by an UVA laser dissector system. The possibility to deliver very low average power to the sample reduced the collateral thermal damage and allowed studying axonal regeneration of mouse neurons during early days in vitro. Force spectroscopy measurements were performed during and after axon ablation with a bead attached to the axonal membrane and held in an optical trap. With this approach, we quantified the adhesion of the axon to the substrate and the viscoelastic properties of the membrane during regeneration. The reorganization and regeneration of the axon was documented by long-term live imaging. Here we demonstrate that BDNF regulates neuronal adhesion and favors the formation of actin waves during regeneration after axonal lesion.
Cell Death & Differentiation | 2014
S Bellani; Andrea Mescola; G Ronzitti; Hanako Tsushima; S Tilve; Claudio Canale; F Valtorta; Evelina Chieregatti
Mutation or multiplication of the alpha-synuclein (Syn)-encoding gene is frequent cause of early onset Parkinson’s disease (PD). Recent evidences point to the pathogenic role of excess Syn also in sporadic PD. Syn is a cytosolic protein, which has been shown to be released from neurons. Here we provide evidence that extracellular Syn induces an increase in surface-exposed glucose-related protein of 78 kDa (GRP78), which becomes clustered in microdomains of the neuronal plasma membrane. Upon interacting with Syn, GRP78 activates a signaling cascade leading to cofilin 1 inactivation and stabilization of microfilaments, thus affecting morphology and dynamics of actin cytoskeleton in cultured neurons. Downregulation of GRP78 abolishes the activity of exogenous Syn, indicating that it is the primary target of Syn. Inactivation of cofilin 1 and stabilization of actin cytoskeleton are present also in fibroblasts derived from genetic PD patients, which show a dramatic increase in stress fibers. Similar changes are displayed by control cells incubated with the medium of PD fibroblasts, only when Syn is present. The accumulation of Syn in the extracellular milieu, its interaction with the plasma membrane and Syn-driven clustering of GRP78 appear, therefore, responsible for the dysregulation of actin turnover, leading to early deficits in synaptic function that precede neurodegeneration.
Journal of the Royal Society Interface | 2012
Szabolcs Beke; F. Anjum; Hanako Tsushima; Luca Ceseracciu; Evelina Chieregatti; Alberto Diaspro; Athanassia Athanassiou; Fernando Brandi
We demonstrate high-resolution photocross-linking of biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) using UV excimer laser photocuring at 308 nm. The curing depth can be tuned in a micrometre range by adjusting the total energy dose (total fluence). Youngs moduli of the scaffolds are found to be a few gigapascal, high enough to support bone formation. The results presented here demonstrate that the proposed technique is an excellent tool for the fabrication of stiff and biocompatible structures on a micrometre scale with defined patterns of high resolution in all three spatial dimensions. Using UV laser photocuring at 308 nm will significantly improve the speed of rapid prototyping of biocompatible and biodegradable polymer scaffolds and enables its production in a few seconds, providing high lateral and horizontal resolution. This short timescale is indeed a tremendous asset that will enable a more efficient translation of technology to clinical applications. Preliminary cell tests proved that PPF : DEF scaffolds produced by excimer laser photocuring are biocompatible and, therefore, are promising candidates to be applied in tissue engineering and regenerative medicine.
The Journal of Neuroscience | 2014
Giuseppe Ronzitti; Giovanna Bucci; X Marco Emanuele; Damiana Leo; Tatyana D. Sotnikova; Liudmila Mus; Camille H. Soubrane; Mark L. Dallas; Agnes Thalhammer; Lorenzo A. Cingolani; Sumiko Mochida; Raul R. Gainetdinov; Gary J. Stephens; Evelina Chieregatti
α-Synuclein is thought to regulate neurotransmitter release through multiple interactions with presynaptic proteins, cytoskeletal elements, ion channels, and synaptic vesicles membrane. α-Synuclein is abundant in the presynaptic compartment, and its release from neurons and glia has been described as responsible for spreading of α-synuclein-derived pathology. α-Synuclein-dependent dysregulation of neurotransmitter release might occur via its action on surface-exposed calcium channels. Here, we provide electrophysiological and biochemical evidence to show that α-synuclein, applied to rat neurons in culture or striatal slices, selectively activates Cav2.2 channels, and said activation correlates with increased neurotransmitter release. Furthermore, in vivo perfusion of α-synuclein into the striatum also leads to acute dopamine release. We further demonstrate that α-synuclein reduces the amount of plasma membrane cholesterol and alters the partitioning of Cav2.2 channels, which move from raft to cholesterol-poor areas of the plasma membrane. We provide evidence for a novel mechanism through which α-synuclein acts from the extracellular milieu to modulate neurotransmitter release and propose a unifying hypothesis for the mechanism of α-synuclein action on multiple targets: the reorganization of plasma membrane microdomains.