Evelyn Fessler
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evelyn Fessler.
Nature Medicine | 2015
Justin Guinney; Rodrigo Dienstmann; Xingwu Wang; Aurélien de Reyniès; Andreas Schlicker; Charlotte Soneson; Laetitia Marisa; Paul Roepman; Gift Nyamundanda; Paolo Angelino; Brian M. Bot; Jeffrey S. Morris; Iris Simon; Sarah Gerster; Evelyn Fessler; Felipe de Sousa e Melo; Edoardo Missiaglia; Hena Ramay; David Barras; Krisztian Homicsko; Dipen M. Maru; Ganiraju C. Manyam; Bradley M. Broom; Valérie Boige; Beatriz Perez-Villamil; Ted Laderas; Ramon Salazar; Joe W. Gray; Douglas Hanahan; Josep Tabernero
Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression–based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated, microsatellite unstable and strong immune activation; CMS2 (canonical, 37%), epithelial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth factor–β activation, stromal invasion and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intratumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC—with clear biological interpretability—and the basis for future clinical stratification and subtype-based targeted interventions.
Nature Medicine | 2013
Felipe de Sousa e Melo; Xin Wang; Marnix Jansen; Evelyn Fessler; Anne Trinh; Laura P M H de Rooij; Joan H. de Jong; Onno J de Boer; Ronald van Leersum; Maarten F. Bijlsma; Hans M. Rodermond; Maartje van der Heijden; Carel J. M. van Noesel; Jurriaan H. B. Tuynman; Evelien Dekker; Florian Markowetz; Jan Paul Medema; Louis Vermeulen
Colon cancer is a clinically diverse disease. This heterogeneity makes it difficult to determine which patients will benefit most from adjuvant therapy and impedes the development of new targeted agents. More insight into the biological diversity of colon cancers, especially in relation to clinical features, is therefore needed. We demonstrate, using an unsupervised classification strategy involving over 1,100 individuals with colon cancer, that three main molecularly distinct subtypes can be recognized. Two subtypes have been previously identified and are well characterized (chromosomal-instable and microsatellite-instable cancers). The third subtype is largely microsatellite stable and contains relatively more CpG island methylator phenotype–positive carcinomas but cannot be identified on the basis of characteristic mutations. We provide evidence that this subtype relates to sessile-serrated adenomas, which show highly similar gene expression profiles, including upregulation of genes involved in matrix remodeling and epithelial-mesenchymal transition. The identification of this subtype is crucial, as it has a very unfavorable prognosis and, moreover, is refractory to epidermal growth factor receptor–targeted therapy.
Cell Stem Cell | 2011
Felipe de Sousa e Melo; Selcuk Colak; Joyce Y. Buikhuisen; Jan Koster; Kate Cameron; Joan H. de Jong; Jurriaan H. B. Tuynman; Evelyn Fessler; Saskia P. van den Bergh; Hans M. Rodermond; Evelien Dekker; Chris M. van der Loos; Steven T. Pals; Marc J. van de Vijver; Rogier Versteeg; Dick J. Richel; Louis Vermeulen; Jan Paul Medema
Gene signatures derived from cancer stem cells (CSCs) predict tumor recurrence for many forms of cancer. Here, we derived a gene signature for colorectal CSCs defined by high Wnt signaling activity, which in agreement with previous observations predicts poor prognosis. Surprisingly, however, we found that elevated expression of Wnt targets was actually associated with good prognosis, while patient tumors with low expression of Wnt target genes segregated with immature stem cell signatures. We discovered that several Wnt target genes, including ASCL2 and LGR5, become silenced by CpG island methylation during progression of tumorigenesis, and that their re-expression was associated with reduced tumor growth. Taken together, our data show that promoter methylation of Wnt target genes is a strong predictor for recurrence of colorectal cancer, and suggest that CSC gene signatures, rather than reflecting CSC numbers, may reflect differentiation status of the malignant tissue.
EMBO Reports | 2013
Felipe de Sousa e Melo; Louis Vermeulen; Evelyn Fessler; Jan Paul Medema
Cancers of various organs have been categorized into distinct subtypes after increasingly sophisticated taxonomies. Additionally, within a seemingly homogeneous subclass, individual cancers contain diverse tumour cell populations that vary in important cancer‐specific traits such as clonogenicity and invasive potential. Differences that exist between and within a given tumour type have hampered significantly both the proper selection of patients that might benefit from therapy, as well as the development of new targeted agents. In this review, we discuss the differences associated with organ‐specific cancer subtypes and the factors that contribute to intra‐tumour heterogeneity. It is of utmost importance to understand the biological causes that distinguish tumours as well as distinct tumour cell populations within malignancies, as these will ultimately point the way to more rational anti‐cancer treatments.EMBO reports advance online publication 12 July 2013; doi:10.1038/embor.2013.92
Cancer Letters | 2013
Evelyn Fessler; Feline E. Dijkgraaf; Felipe de Sousa e Melo; Jan Paul Medema
Stem cells are defined by their self-renewal capacity and the ability to give rise to all differentiated progeny necessary for one specific organ. These two characteristics are also inherent in cancer stem cells (CSCs), which are thought to be the only subpopulation within a tumor endowed with tumorigenic potential. CSCs combine many features that render cancer one of the leading causes of death in the Western world: metastasis, tumor recurrence, and therapy refractoriness. Strikingly, CSCs are not a fixed entity, but differentiated tumor cells are able to revert to a stem-like state. Thus, CSCs are not only intrinsically programmed to fulfill their detrimental roles, but are orchestrated by stromal cells residing in their vicinity and forming the CSC niche. Yet, this relationship is not a one-way road: CSCs are able to manipulate stromal cells to their needs, not only in the primary tumor, but also in distant organs and thus prime the foreign soil for their arrival by inducing a premetastatic niche. The suggested plasticity between the differentiation states of cancer cells and the regulation by microenvironmental cues provides new starting-points for novel cancer therapies.
Cell Death & Differentiation | 2014
Selcuk Colak; C D Zimberlin; Evelyn Fessler; Leah Hogdal; Catarina Grandela; Anthony Letai; Jan Paul Medema
Tumor heterogeneity is in part determined by the existence of cancer stem cells (CSCs) and more differentiated tumor cells. CSCs are considered to be the tumorigenic root of cancers and suggested to be chemotherapy resistant. Here we exploited an assay that allowed us to measure chemotherapy-induced cell death in CSCs and differentiated tumor cells simultaneously. This confirmed that CSCs are selectively resistant to conventional chemotherapy, which we revealed is determined by decreased mitochondrial priming. In agreement, lowering the anti-apoptotic threshold using ABT-737 and WEHI-539 was sufficient to enhance chemotherapy efficacy, whereas ABT-199 failed to sensitize CSCs. Our data therefore point to a crucial role of BCLXL in protecting CSCs from chemotherapy and suggest that BH3 mimetics, in combination with chemotherapy, can be an efficient way to target chemotherapy-resistant CSCs.
The Lancet Gastroenterology & Hepatology | 2016
Enric Domingo; Luke Freeman-Mills; Emily Rayner; Mark A. Glaire; Sarah Briggs; Louis Vermeulen; Evelyn Fessler; Jan Paul Medema; Arnoud Boot; Hans Morreau; Tom van Wezel; Gerrit Jan Liefers; Ragnhild A. Lothe; Stine A. Danielsen; Anita Sveen; Arild Nesbakken; Inti Zlobec; Alessandro Lugli; Viktor H. Koelzer; Martin D. Berger; Sergi Castellví-Bel; Jenifer Muñoz; Marco de Bruyn; Hans W. Nijman; Marco Novelli; Kay Lawson; Dahmane Oukrif; Eleni Frangou; Peter Dutton; Sabine Tejpar
BACKGROUND Precision cancer medicine depends on defining distinct tumour subgroups using biomarkers that may occur at very modest frequencies. One such subgroup comprises patients with exceptionally mutated (ultramutated) cancers caused by mutations that impair DNA polymerase epsilon (POLE) proofreading. METHODS We examined the association of POLE proofreading domain mutation with clinicopathological variables and immune response in colorectal cancers from clinical trials (VICTOR, QUASAR2, and PETACC-3) and colorectal cancer cohorts (Leiden University Medical Centre 1 and 2, Oslo 1 and 2, Bern, AMC-AJCC-II, and Epicolon-1). We subsequently investigated its association with prognosis in stage II/III colorectal cancer by Cox regression of pooled individual patient data from more than 4500 cases from these studies. FINDINGS Pathogenic somatic POLE mutations were detected in 66 (1·0%) of 6517 colorectal cancers, and were mutually exclusive with mismatch repair deficiency (MMR-D) in the 6277 cases for whom both markers were determined (none of 66 vs 833 [13·4%] of 6211; p<0·0001). Compared with cases with wild-type POLE, cases with POLE mutations were younger at diagnosis (median 54·5 years vs 67·2 years; p<0·0001), were more frequently male (50 [75·8%] of 66 vs 3577 [55·5%] of 6445; p=0·0010), more frequently had right-sided tumour location (44 [68·8%] of 64 vs 2463 [39·8%] of 6193; p<0·0001), and were diagnosed at an earlier disease stage (p=0·006, χ2 test for trend). Compared with mismatch repair proficient (MMR-P) POLE wild-type tumours, POLE-mutant colorectal cancers displayed increased CD8+ lymphocyte infiltration and expression of cytotoxic T-cell markers and effector cytokines, similar in extent to that observed in immunogenic MMR-D cancers. Both POLE mutation and MMR-D were associated with significantly reduced risk of recurrence compared with MMR-P colorectal cancers in multivariable analysis (HR 0·34 [95% CI 0·11-0·76]; p=0·0060 and 0·72 [0·60-0·87]; p=0·00035), although the difference between the groups was not significant. INTERPRETATION POLE proofreading domain mutations identify a subset of immunogenic colorectal cancers with excellent prognosis. This association underscores the importance of rare biomarkers in precision cancer medicine, but also raises important questions about how to identify and implement them in practice. FUNDING Cancer Research UK, Academy of Medical Sciences, Health Foundation, EU, ERC, NIHR, Wellcome Trust, Dutch Cancer Society, Dutch Digestive Foundation.
Embo Molecular Medicine | 2016
Evelyn Fessler; Jarno Drost; Sander R. van Hooff; Janneke F. Linnekamp; Xin Wang; Marnix Jansen; Felipe de Sousa e Melo; Joep E. G. IJspeert; Marek Franitza; Peter Nürnberg; Carel J. M. van Noesel; Evelien Dekker; Louis Vermeulen; Hans Clevers; Jan Paul Medema
The heterogeneous nature of colorectal cancer (CRC) complicates prognosis and is suggested to be a determining factor in the efficacy of adjuvant therapy for individual patients. Based on gene expression profiling, CRC is currently classified into four consensus molecular subtypes (CMSs), characterized by specific biological programs, thus suggesting the existence of unifying developmental drivers for each CMS. Using human organoid cultures, we investigated the role of such developmental drivers at the premalignant stage of distinct CRC subtypes and found that TGFβ plays an important role in the development of the mesenchymal CMS4, which is of special interest due to its association with dismal prognosis. We show that in tubular adenomas (TAs), which progress to classical CRCs, the dominating response to TGFβ is death by apoptosis. By contrast, induction of a mesenchymal phenotype upon TGFβ treatment prevails in a genetically engineered organoid culture carrying a BRAFV600E mutation, constituting a model system for sessile serrated adenomas (SSAs). Our data indicate that TGFβ signaling is already active in SSA precursor lesions and that TGFβ is a critical cue for directing SSAs to the mesenchymal, poor‐prognosis CMS4 of CRC.
Clinical Cancer Research | 2017
Anne Trinh; Kari Trumpi; Felipe de Sousa e Melo; Xin Wang; Joan H. de Jong; Evelyn Fessler; Peter J. K. Kuppen; Marlies S. Reimers; Marloes Swets; Miriam Koopman; Iris D. Nagtegaal; Marnix Jansen; Gerrit K.J. Hooijer; George Johan Offerhaus; Onno Kranenburg; Cornelis J. A. Punt; Jan Paul Medema; Florian Markowetz; Louis Vermeulen
Purpose: Recent transcriptomic analyses have identified four distinct molecular subtypes of colorectal cancer with evident clinical relevance. However, the requirement for sufficient quantities of bulk tumor and difficulties in obtaining high-quality genome-wide transcriptome data from formalin-fixed paraffin-embedded tissue are obstacles toward widespread adoption of this taxonomy. Here, we develop an immunohistochemistry-based classifier to validate the prognostic and predictive value of molecular colorectal cancer subtyping in a multicenter study. Experimental Design: Tissue microarrays from 1,076 patients with colorectal cancer from four different cohorts were stained for five markers (CDX2, FRMD6, HTR2B, ZEB1, and KER) by immunohistochemistry and assessed for microsatellite instability. An automated classification system was trained on one cohort using quantitative image analysis or semiquantitative pathologist scoring of the cores as input and applied to three independent clinical cohorts. Results: This classifier demonstrated 87% concordance with the gold-standard transcriptome-based classification. Application to three validation datasets confirmed the poor prognosis of the mesenchymal-like molecular colorectal cancer subtype. In addition, retrospective analysis demonstrated the benefit of adding cetuximab to bevacizumab and chemotherapy in patients with RAS wild-type metastatic cancers of the canonical epithelial-like subtypes. Conclusions: This study shows that a practical and robust immunohistochemical assay can be employed to identify molecular colorectal cancer subtypes and uncover subtype-specific therapeutic benefit. Finally, the described tool is available online for rapid classification of colorectal cancer samples, both in the format of an automated image analysis pipeline to score tumor core staining, and as a classifier based on semiquantitative pathology scoring. Clin Cancer Res; 23(2); 387–98. ©2016 AACR.
Molecular Cancer | 2015
Evelyn Fessler; Tijana Borovski; Jan Paul Medema
BackgroundGlioblastoma multiforme (GBM) is a rapidly growing malignant brain tumor, which has been reported to be organized in a hierarchical fashion with cancer stem cells (CSCs) at the apex. Recent studies demonstrate that this hierarchy does not follow a one-way route but can be reverted with more differentiated cells giving rise to cells possessing CSC features. We investigated the role of tumor microvascular endothelial cells (tMVECs) in reverting differentiated glioblastoma cells to CSC-like cells.MethodsWe made use of primary GBM lines and tMVECs. To ensure differentiation, CSC-enriched cultures were forced into differentiation using several stimuli and cultures consisting solely of differentiated cells were obtained by sorting on the oligodendrocyte marker O4. Reversion to the CSC state was assessed phenotypically by CSC marker expression and functionally by evaluating clonogenic and multilineage differentiation potential.ResultsConditioned medium of tMVECs was able to replenish the CSC pool by phenotypically and functionally reverting differentiated GBM cells to the CSC state. Basic fibroblast growth factor (bFGF), secreted by tMVECs, recapitulated the effects of the conditioned medium in inducing re-expression of CSC markers and increasing neurosphere formation ability of differentiated GBM cells.ConclusionsOur findings demonstrate that the CSC-based hierarchy displays a high level of plasticity showing that differentiated GBM cells can acquire CSC features when placed in the right environment. These results point to the need to intersect the elaborate network of tMVECs and GBM CSCs for efficient elimination of GBM CSCs.