Even Fossum
Oslo University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Even Fossum.
Immunity | 2016
Martin Guilliams; Charles-Antoine Dutertre; Charlotte L. Scott; Naomi McGovern; Dorine Sichien; Svetoslav Chakarov; Sofie Van Gassen; Jinmiao Chen; Michael Poidinger; Sofie De Prijck; Simon Tavernier; Ivy Low; Sergio Erdal Irac; Citra Nurfarah Zaini Mattar; Hermi Rizal Bin Sumatoh; Gillian Low; Tam John Kit Chung; Dedrick Kok Hong Chan; Ker-Kan Tan; Tony Lim Kiat Hon; Even Fossum; Bjarne Bogen; Mahesh Choolani; Jerry Kok Yen Chan; Anis Larbi; Hervé Luche; Sandrine Henri; Yvan Saeys; Evan W. Newell; Bart N. Lambrecht
Summary Dendritic cells (DCs) are professional antigen-presenting cells that hold great therapeutic potential. Multiple DC subsets have been described, and it remains challenging to align them across tissues and species to analyze their function in the absence of macrophage contamination. Here, we provide and validate a universal toolbox for the automated identification of DCs through unsupervised analysis of conventional flow cytometry and mass cytometry data obtained from multiple mouse, macaque, and human tissues. The use of a minimal set of lineage-imprinted markers was sufficient to subdivide DCs into conventional type 1 (cDC1s), conventional type 2 (cDC2s), and plasmacytoid DCs (pDCs) across tissues and species. This way, a large number of additional markers can still be used to further characterize the heterogeneity of DCs across tissues and during inflammation. This framework represents the way forward to a universal, high-throughput, and standardized analysis of DC populations from mutant mice and human patients.
Journal of Immunology | 2011
Karine Crozat; Samira Tamoutounour; Thien-Phong Vu Manh; Even Fossum; Hervé Luche; Laurence Ardouin; Martin Guilliams; Hiroaki Azukizawa; Bjarne Bogen; Bernard Malissen; Sandrine Henri; Marc Dalod
Subsets of dendritic cells (DCs) have been described according to their functions and anatomical locations. Conventional DC subsets are defined by reciprocal expression of CD11b and CD8α in lymphoid tissues (LT), and of CD11b and CD103 in non-LT (NLT). Spleen CD8α+ and dermal CD103+ DCs share a high efficiency for Ag cross-presentation and a developmental dependency on specific transcription factors. However, it is not known whether all NLT-derived CD103+ DCs and LT-resident CD8α+ DCs are similar despite their different anatomical locations. XCR1 was previously described as exclusively expressed on mouse spleen CD8α+ DCs and human blood BDCA3+ DCs. In this article, we showed that LT-resident CD8α+ DCs and NLT-derived CD103+ DCs specifically express XCR1 and are characterized by a unique transcriptional fingerprint, irrespective of their tissue of origin. Therefore, CD8α+ DCs and CD103+ DCs belong to a common DC subset which is unequivocally identified by XCR1 expression throughout the body.
Journal of Immunology | 2014
Sreekumar Balan; Vincent Ollion; Nicholas J. Colletti; Rabie Chelbi; Frederic Montañana-Sanchis; Hong Liu; Thien-Phong Vu Manh; Cindy Sanchez; Juliette Savoret; Ivan Perrot; Anne-Claire Doffin; Even Fossum; Didier Bechlian; Christian Chabannon; Bjarne Bogen; Carine Asselin-Paturel; Michael Shaw; Timothy J. Soos; Christophe Caux; Jenny Valladeau-Guilemond; Marc Dalod
Human monocyte-derived dendritic cell (MoDC) have been used in the clinic with moderately encouraging results. Mouse XCR1+ DC excel at cross-presentation, can be targeted in vivo to induce protective immunity, and share characteristics with XCR1+ human DC. Assessment of the immunoactivation potential of XCR1+ human DC is hindered by their paucity in vivo and by their lack of a well-defined in vitro counterpart. We report in this study a protocol generating both XCR1+ and XCR1− human DC in CD34+ progenitor cultures (CD34-DC). Gene expression profiling, phenotypic characterization, and functional studies demonstrated that XCR1− CD34-DC are similar to canonical MoDC, whereas XCR1+ CD34-DC resemble XCR1+ blood DC (bDC). XCR1+ DC were strongly activated by polyinosinic-polycytidylic acid but not LPS, and conversely for MoDC. XCR1+ DC and MoDC expressed strikingly different patterns of molecules involved in inflammation and in cross-talk with NK or T cells. XCR1+ CD34-DC but not MoDC efficiently cross-presented a cell-associated Ag upon stimulation by polyinosinic-polycytidylic acid or R848, likewise to what was reported for XCR1+ bDC. Hence, it is feasible to generate high numbers of bona fide XCR1+ human DC in vitro as a model to decipher the functions of XCR1+ bDC and as a potential source of XCR1+ DC for clinical use.
European Journal of Immunology | 2015
Even Fossum; Gunnveig Grødeland; Dorothea Terhorst; Anders Aune Tveita; Elisabeth Vikse; Siri Mjaaland; Sandrine Henri; Bernard Malissen; Bjarne Bogen
Targeting antigens to cross‐presenting dendritic cells (DCs) is a promising method for enhancing CD8+ T‐cell responses. However, expression patterns of surface receptors often vary between species, making it difficult to relate observations in mice to other animals. Recent studies have indicated that the chemokine receptor Xcr1 is selectively expressed on cross‐presenting murine CD8α+ DCs, and that the expression is conserved on homologous DC subsets in humans (CD141+ DCs), sheep (CD26+ DCs), and macaques (CADM1+ DCs). We therefore tested if targeting antigens to Xcr1 on cross‐presenting DCs using antigen fused to Xcl1, the only known ligand for Xcr1, could enhance immune responses. Bivalent Xcl1 fused to model antigens specifically bound CD8α+ DCs and increased proliferation of antigen‐specific T cells. DNA vaccines encoding dimeric Xcl1‐hemagglutinin (HA) fusion proteins induced cytotoxic CD8+ T‐cell responses, and mediated full protection against a lethal challenge with influenza A virus. In addition to enhanced CD8+ T‐cell responses, targeting of antigen to Xcr1 induced CD4+ Th1 responses and highly selective production of IgG2a antibodies. In conclusion, targeting of dimeric fusion vaccine molecules to CD8α+ DCs using Xcl1 represents a novel and promising method for induction of protective CD8+ T‐cell responses.
Journal of Immunology | 2014
Charles-Antoine Dutertre; Jean-Pierre Jourdain; Magali Rancez; Sonia Amraoui; Even Fossum; Bjarne Bogen; Cindy Sanchez; Anne Couëdel-Courteille; Yolande Richard; Marc Dalod; Vincent Feuillet; Rémi Cheynier; Anne Hosmalin
In mice, CD8α+ myeloid dendritic cells (mDC) optimally cross-present Ags to CD8+ T cells and respond strongly to TLR3 ligands. Although equivalent DC have been identified by comparative genomic analysis and functional studies in humans as XCR1+CD141 (BDCA-3)+Clec9A+cell adhesion molecule 1+ mDC, and in sheep as CD26+ mDC, these cells remained elusive in nonhuman primates. To remedy this situation, we delineated precisely DC and monocyte populations by 12-color flow cytometry and transcriptomic analyses in healthy rhesus macaques. We identified a new mDC population, with strong phenotypic and transcriptional homology to human CD141+ and murine CD8α+ mDC, including XCR1 membrane expression as a conserved specific marker. In contrast, high CD11c expression was not characteristic of mDC in macaques, but of CD16+ monocytes. Like their human and murine homologs, simian XCR1+ mDC had much stronger responses to TLR3 stimulation than other myeloid cells. The importance of this new mDC population was tested in SIVmac251 infection, the most relevant animal model for pathogenic HIV-1 infection and vaccination. This population increased sharply and transiently during acute infection, but was reduced in blood and spleen during advanced disease. The identification of XCR1+ mDC in rhesus macaques opens new avenues for future preclinical vaccinal studies and highlights XCR1 as a prime candidate for targeted vaccine delivery.
Journal of Immunology | 2015
Dorothea Terhorst; Even Fossum; Anna Baranska; Samira Tamoutounour; Camille Malosse; Mattia Garbani; Reinhard Braun; Elmira Lechat; Bjarne Bogen; Sandrine Henri; Bernard Malissen
The development of vaccines inducing efficient CD8+ T cell responses is the focus of intense research. Dendritic cells (DCs) expressing the XCR1 chemokine receptor, also known as CD103+ or CD8α+ DCs, excel in the presentation of extracellular Ags to CD8+ T cells. Because of its high numbers of DCs, including XCR1+ DCs, the skin dermis is an attractive site for vaccine administration. By creating laser-generated micropores through the epidermis, we targeted a model protein Ag fused to XCL1, the ligand of XCR1, to dermal XCR1+ DCs and induced Ag-specific CD8+ and CD4+ T cell responses. Efficient immunization required the emigration of XCR1+ dermal DCs to draining lymph nodes and occurred irrespective of TLR signaling. Moreover, a single intradermal immunization protected mice against melanoma tumor growth in prophylactic and therapeutic settings, in the absence of exogenous adjuvant. The mild inflammatory milieu created in the dermis by skin laser microporation itself most likely favored the development of potent T cell responses in the absence of exogenous adjuvants. The existence of functionally equivalent XCR1+ dermal DCs in humans should permit the translation of laser-assisted intradermal delivery of a tumor-specific vaccine targeting XCR1+ DCs to human cancer immunotherapy. Moreover, considering that the use of adjuvants in vaccines is often associated with safety issues, the possibility of inducing protective responses against melanoma tumor growth independently of the administration of exogenous adjuvants should facilitate the development of safer vaccines.
Frontiers in Immunology | 2015
Gunnveig Grødeland; Even Fossum; Bjarne Bogen
Current influenza vaccines mostly aim at the induction of specific neutralizing antibodies. While antibodies are important for protection against a particular virus strain, T cells can recognize epitopes that will offer broader protection against influenza. We have previously developed a DNA vaccine format by which protein antigens can be targeted specifically to receptors on antigen presenting cells (APCs). The DNA-encoded vaccine proteins are homodimers, each chain consisting of a targeting unit, a dimerization unit, and an antigen. The strategy of targeting antigen to APCs greatly enhances immune responses as compared to non-targeted controls. Furthermore, targeting of antigen to different receptors on APCs can polarize the immune response to different arms of immunity. Here, we discuss how targeting of hemagglutinin to MHC class II molecules increases Th2 and IgG1 antibody responses, whereas targeting to chemokine receptors XCR1 or CCR1/3/5 increases Th1 and IgG2a responses, in addition to CD8+ T cell responses. We also discuss these results in relation to work published by others on APC-targeting. Differential targeting of APC surface molecules may allow the induction of tailor-made phenotypes of adaptive immune responses that are optimal for protection against various infectious agents, including influenza virus.
Developmental and Comparative Immunology | 2016
Charlotte Deloizy; Edwige Bouguyon; Even Fossum; Peter Sebo; Radim Osicka; Angélique Bole; Michel Pierres; Stéphane Biacchesi; Marc Dalod; Bjarne Bogen; Nicolas Bertho; Isabelle Schwartz-Cornil
Pig is a domestic species of major importance in the agro-economy and in biomedical research. Mononuclear phagocytes (MNP) are organized in subsets with specialized roles in the orchestration of the immune response and new tools are awaited to improve MNP subset identification in the pig. We cloned pig CD11c cDNA and generated a monoclonal antibody to pig CD11c which showed a pattern of expression by blood and skin MNP subsets similar to humans. We also developed a porcine XCL1-mCherry dimer which specifically reacted with the XCR1-expressing dendritic cell subset of the type 1 lineage in blood and skin. These original reagents will allow the efficient identification of pig MNP subsets to study their role in physiological and pathological processes and also to target these cells in novel intervention and vaccine strategies for veterinary applications and preclinical evaluations.
Journal of Immunology | 2017
Arnar Gudjonsson; Anna Lysén; Sreekumar Balan; Vibeke Sundvold-Gjerstad; Catharina Arnold-Schrauf; Lisa Richter; Espen S. Baekkevold; Marc Dalod; Bjarne Bogen; Even Fossum
Targeting Ags to conventional dendritic cells can enhance Ag-specific immune responses. Although most studies have focused on the induction of T cell responses, the mechanisms by which targeting improves Ab responses are poorly understood. In this study we present data on the use of human XCL1 (hXCL1) and hXCL2 fusion vaccines in a murine model. We show that the human chemokines bound type 1 conventional dendritic cells (cDC1), and that immunization with influenza virus hemagglutinin fused to hXCL1 or hXCL2 induced full protection against influenza challenge. Surprisingly, the hXCL1- and hXCL2-fusion vaccines induced better long-term protection associated with stronger induction of neutralizing Abs, and more Ab-secreting cells in bone marrow. In contrast, murine Xcl1 fusion vaccines induced stronger CD8+ T cell responses compared with hXCL1. Further analysis revealed that although murine Xcl1 fusion vaccines induced chemotaxis and were rapidly endocytosed by cDC1, hXCL1 and hXCL2 fusion vaccines did not induce chemotaxis, were less efficiently endocytosed, and consequently, remained on the surface. This difference may explain the enhanced induction of Abs when targeting Ag to cDC1 using hXCL1 and hXCL2, and suggests that immune responses can be manipulated in directing Abs or T cells based on how efficiently the targeted Ag is endocytosed by the DC.
Scientific Reports | 2016
Peng Zhou; Yok Teng Chionh; Sergio Erdal Irac; Matae Ahn; Justin H. J. Ng; Even Fossum; Bjarne Bogen; Florent Ginhoux; Aaron Trent Irving; Charles-Antoine Dutertre; Lin-Fa Wang
Bats carry and shed many emerging infectious disease agents including Ebola virus and SARS-like Coronaviruses, yet they rarely display clinical symptoms of infection. Bat epithelial or fibroblast cell lines were previously established to study the bat immune response against viral infection. However, the lack of professional immune cells such as dendritic cells (DC) and macrophages has greatly limited the significance of current investigations. Using Pteropus alecto (P. alecto) GM-CSF plus IL4, FLT3L and CSF-1, we successfully generated bat bone marrow-derived DC and macrophages. Cells with the phenotype, morphology and functional features of monocyte-derived DC, bona fide DC or macrophages were obtained in GM-CSF/IL4, FLT3L or CSF-1 cultures, respectively. The successful generation of the first bat bone marrow-derived immune cells paves the way to unlocking the immune mechanisms that confer host resilience to pathogens in bats.