Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evert Klaseboer is active.

Publication


Featured researches published by Evert Klaseboer.


Soft Matter | 2011

Film drainage and coalescence between deformable drops and bubbles

Derek Y. C. Chan; Evert Klaseboer; Rogerio Manica

The interaction between deformable drops or bubbles encompasses a number of distinguishing characteristics not present in the interaction between solid bodies. The drops can entrap a thin liquid film of the continuous phase that can lead to a stable film or coalescence. But before leading to either of these outcomes, the film must drain under the influence of an external driving force. This drainage process exhibits all the characteristic features of dynamic interactions between soft materials. For example, the spatial and temporal variations of forces and geometric deformations, arising from hydrodynamic flow, surface forces and variations in material properties, are all inextricably interconnected. Recent measurements of time-varying deformations and forces between interacting drops and bubbles confirmed that dynamic forces and geometric deformations are coupled and provide the key to understand novel phenomena such as the “wimple” in mechanically perturbed films. The counter-intuitive phenomenon of coalescence triggered by separating proximal drops or bubbles can also be elucidated using the same theoretical framework. One approach to modelling such systems is to use a fluid mechanics formulation of two-phase flow for which a number of parametric numerical studies have been made. Another popular approach focuses on describing the thin film between the interacting drops or bubbles with a flat film model upon which a phenomenological film drainage and rupture mechanism has been developed. While both models have a similar genesis, their predictions of the fate of the draining film are quite different. Furthermore, there have been few quantitative comparisons between results obtained from many different experimental approaches with either theory. One reason for this is perhaps due to difficulties in matching experimental parameters to model conditions. A direct attempt to model dynamic behaviour in many experimental studies is challenging as the model needs to be able to describe phenomena spanning six orders of magnitude in length scales. However, with the recent availability of accurate experimental studies concerning dynamic interaction between drops and bubbles that use very different, but complementary approaches, it is timely to conduct a critical review to compare such results with long-accepted paradigms of film stability and coalescence. This topic involves the coupling of behaviour on the millimetre–micrometre scale familiar to readers with an engineering and fluid mechanics background to phenomena on the micrometre–nanometre scale that is the domain of the interfacial science and nanotechnology community.


Journal of Fluid Mechanics | 2005

Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure

Evert Klaseboer; K. C. Hung; C. Wang; C. W. Wang; B. C. Khoo; P. Boyce; S. Debono; H. Charlier

This paper deals with an experimental and numerical study of the dynamics of an underwater explosion and its associated fluid–structure interaction. Experimental studies of the complex fluid–structure interaction phenomena were carried out in a specially designed test pond. The pond is equipped with a high-speed camera and pressure and displacement sensors. The high-speed camera was used to capture the expansion and collapse of the gas bubble created by the explosion. Several different structures were used in the experiments, including both rigid and resilient plates of circular shape. The deformation of the plate was measured with a non-contact laser telemetry device. The numerical simulations of the explosion bubble interacting with a submerged resilient structure were performed using a three-dimensional bubble dynamics code in conjunction with a structural code. The bubble code is based on the boundary-element method (BEM) and has been coupled to a structural finite-element code (PAM-CRASH


Journal of Applied Physics | 2006

Experimental and numerical study of transient bubble-elastic membrane interaction

Cary K. Turangan; G. P. Ong; Evert Klaseboer; Boo Cheong Khoo

^{\rm TM})


Advances in Colloid and Interface Science | 2011

Theory of non-equilibrium force measurements involving deformable drops and bubbles

Derek Y. C. Chan; Evert Klaseboer; Rogerio Manica

. The experimental results were compared against the numerical results for different bubble–structure configurations and orientations. Several physical phenomena that have been observed, such as bubble jetting and bubble migration towards the structure are discussed.


Journal of Fluid Mechanics | 2007

Interaction of lithotripter shockwaves with single inertial cavitation bubbles

Evert Klaseboer; Siew Wan Fong; Cary K. Turangan; Boo Cheong Khoo; Andrew J. Szeri; Michael L. Calvisi; Georgy Sankin; Pei Zhong

A study of the interaction between a membrane and a submerged oscillating bubble is presented. Though the behavior of such a bubble near an elastic (relatively thick) boundary has been studied by several authors, much less attention is focused on the behavior of such a bubble near a (thin) elastic membrane. For membranes, it is the curvature and not the deflection that is responsible for a pressure buildup in the fluid close to the bubble. Due to this difference in physics, it is not a certainty if the dynamics of bubbles near a deformable elastic boundary vis-a-vis a membrane would exhibit any similarity. Our intent is a systematic study on the latter, which can be exploited in future work (e.g., in biomedical applications where elastic membranes are often involved). Experimental observations of transient bubble interaction with a thin elastic membrane are presented and the dynamics of the bubble in the vicinity of the membrane are compared to the boundary element method simulations. The bubble is genera...


Proceedings of the National Academy of Sciences of the United States of America | 2011

Sonochemistry and sonoluminescence in microfluidics

Tandiono; Siew-Wan Ohl; Dave Siak-Wei Ow; Evert Klaseboer; Victor Vai Tak Wong; R. Dumke; Claus-Dieter Ohl

Over the past decade, direct force measurements using the Atomic Force Microscope (AFM) have been extended to study non-equilibrium interactions. Perhaps the more scientifically interesting and technically challenging of such studies involved deformable drops and bubbles in relative motion. The scientific interest stems from the rich complexity that arises from the combination of separation dependent surface forces such as Van der Waals, electrical double layer and steric interactions with velocity dependent forces from hydrodynamic interactions. Moreover the effects of these forces also depend on the deformations of the surfaces of the drops and bubbles that alter local conditions on the nanometer scale, with deformations that can extend over micrometers. Because of incompressibility, effects of such deformations are strongly influenced by small changes of the sizes of the drops and bubbles that may be in the millimeter range. Our focus is on interactions between emulsion drops and bubbles at around 100 μm size range. At the typical velocities in dynamic force measurements with the AFM which span the range of Brownian velocities of such emulsions, the ratio of hydrodynamic force to surface tension force, as characterized by the capillary number, is ~10(-6) or smaller, which poses challenges to modeling using direct numerical simulations. However, the qualitative and quantitative features of the dynamic forces between interacting drops and bubbles are sensitive to the detailed space and time-dependent deformations. It is this dynamic coupling between forces and deformations that requires a detailed quantitative theoretical framework to help interpret experimental measurements. Theories that do not treat forces and deformations in a consistent way simply will not have much predictive power. The technical challenges of undertaking force measurements are substantial. These range from generating drop and bubble of the appropriate size range to controlling the physicochemical environment to finding the optimal and quantifiable way to place and secure the drops and bubbles in the AFM to make reproducible measurements. It is perhaps no surprise that it is only recently that direct measurements of non-equilibrium forces between two drops or two bubbles colliding in a controlled manner have been possible. This review covers the development of a consistent theory to describe non-equilibrium force measurements involving deformable drops and bubbles. Predictions of this model are also tested on dynamic film drainage experiments involving deformable drops and bubbles that use very different techniques to the AFM to demonstrate that it is capable of providing accurate quantitative predictions of both dynamic forces and dynamic deformations. In the low capillary number regime of interest, we observe that the dynamic behavior of all experimental results reviewed here are consistent with the tangentially immobile hydrodynamic boundary condition at liquid-liquid or liquid-gas interfaces. The most likely explanation for this observation is the presence of trace amounts of surface-active species that are responsible for arresting interfacial flow.


Lab on a Chip | 2010

Creation of cavitation activity in a microfluidic device through acoustically driven capillary waves

Tandiono; Siew-Wan Ohl; Dave Siak-Wei Ow; Evert Klaseboer; Victor Vai Tak Wong; Andrea Camattari; Claus-Dieter Ohl

The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed.


Journal of Fluid Mechanics | 2008

The acceleration of solid particles subjected to cavitation nucleation

B.M. Borkent; Manish Arora; Claus-Dieter Ohl; Nico de Jong; Michel Versluis; Detlef Lohse; Knud Aage Mørch; Evert Klaseboer; Boo Cheong Khoo

One way to focus the diffuse energy of a sound field in a liquid is by acoustically driving bubbles into nonlinear oscillation. A rapid and nearly adiabatic bubble collapse heats up the bubble interior and produces intense concentration of energy that is able to emit light (sonoluminescence) and to trigger chemical reactions (sonochemistry). Such phenomena have been extensively studied in bulk liquid. We present here a realization of sonoluminescence and sonochemistry created from bubbles confined within a narrow channel of polydimethylsiloxane-based microfluidic devices. In the microfluidics channels, the bubbles form a planar/pancake shape. During bubble collapse we find the formation of OH radicals and the emission of light. The chemical reactions are closely confined to gas–liquid interfaces that allow for spatial control of sonochemical reactions in lab-on-a-chip devices. The decay time of the light emitted from the sonochemical reaction is several orders faster than that in the bulk liquid. Multibubble sonoluminescence emission in contrast vanishes immediately as the sound field is stopped.


Physics of Fluids | 2014

An extended Bretherton model for long Taylor bubbles at moderate capillary numbers

Evert Klaseboer; Raghvendra Gupta; Rogerio Manica

We present a study on achieving intense acoustic cavitation generated by ultrasonic vibrations in polydimethylsiloxane (PDMS) based microfluidic devices. The substrate to which the PDMS is bonded was forced into oscillation with a simple piezoelectric transducer attached at 5 mm from the device to a microscopic glass slide. The transducer was operated at 100 kHz with driving voltages ranging between 20 V and 230 V. Close to the glass surface, pressure and vibration amplitudes of up to 20 bar and 400 nm were measured respectively. It is found that this strong forcing leads to the excitation of nonlinear surface waves when gas-liquid interfaces are present in the microfluidic channels. Also, it is observed that nuclei leading to intense inertial cavitation are generated by the entrapment of gas pockets at those interfaces. Subsequently, cavitation bubble clusters with void fractions of more than 50% are recorded with high-speed photography at up to 250,000 frames/s. The cavitation clusters can be sustained through the continuous injection of gas using a T-junction in the microfluidic device.


Journal of Fluid Mechanics | 2012

Non-singular boundary integral methods for fluid mechanics applications

Evert Klaseboer; Qiang Sun; Derek Y. C. Chan

The cavity–particle dynamics at cavitation inception on the surface of spherical particles suspended in water and exposed to a strong tensile stress wave is experimentally studied with high-speed photography. Particles, which serve as nucleation sites for cavitation bubbles, are set into a fast translatory motion during the explosive growth of the cavity. They reach velocities of ~40 ms−1 and even higher. When the volume growth of the cavity slows down, the particle detaches from the cavity through a process of neck-breaking, and the particle is shot away. The experimental observations are simulated with (i) a spherical cavity model and (ii) with an axisymmetric boundary element method (BEM). The input for both models is a pressure pulse, which is obtained from the observed radial cavity dynamics during an individual experiment. The model then allows us to calculate the resulting particle trajectory. The cavity shapes obtained from the BEM calculations compare well with the photographs until neck formation occurs. In several cases we observed inception at two or more locations on a single particle. Moreover, after collapse of the primary cavity, a second inception was often observed. Finally, an example is presented to demonstrate the potential application of the cavity–particle system as a particle cannon, e.g. in the context of drug delivery into tissue.

Collaboration


Dive into the Evert Klaseboer's collaboration.

Top Co-Authors

Avatar

Boo Cheong Khoo

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claus-Dieter Ohl

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiang Sun

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siew Wan Fong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge