Evgenia Leikina
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evgenia Leikina.
FEBS Letters | 1993
Leonid V. Chernomordik; Steven S. Vogel; Aleksander Sokoloff; H.Ongun Onaran; Evgenia Leikina; Joshua Zimmerberg
Membrane fusion in exocytosis, intracellular trafficking, and enveloped viral infection is thought to be mediated by specialized proteins acting to merge membrane lipid bilayers. We now show that one class of naturally‐occurring phospholipids, lysolipids, inhibits fusion between cell membranes, organelles, and between organelles and plasma membrane. Inhibition was reversible, did not correlate with lysis, and could be attributed to the molecular shape of lysolipids rather than to any specific chemical moiety. Fusion was arrested at a stage preceding fusion pore formation. Our results are consistent with the hypothesis that biological fusion, irrespective of trigger, involves the formation of a highly bent intermediate between membranes, the fusion stalk.
Journal of Virology | 2000
Olga Greengard; Natalia Poltoratskaia; Evgenia Leikina; Joshua Zimmerberg; Anne Moscona
ABSTRACT 4-GU-DANA (zanamivir) (as well as DANA and 4-AM-DANA) was found to inhibit the neuraminidase activity of human parainfluenza virus type 3 (HPF3). The viral neuraminidase activity is attributable to hemagglutinin-neuraminidase (HN), an envelope protein essential for viral attachment and for fusion mediated by the other envelope protein, F. While there is no evidence that HNs neuraminidase activity is essential for receptor binding and syncytium formation, we found that 4-GU-DANA prevented hemadsorption and fusion of persistently infected cells with uninfected cells. In plaque assays, 4-GU-DANA reduced the number (but not the area) of plaques if present only during the adsorption period and reduced plaque area (but not number) if added only after the 90-min adsorption period. 4-GU-DANA also reduced the area of plaques formed by a neuraminidase-deficient variant, confirming that its interference with cell-cell fusion is unrelated to inhibition of neuraminidase activity. The order-of-magnitude lower 50% inhibitory concentrations of 4-GU-DANA (and also DANA and 4-AM-DANA) for plaque area reduction and for inhibition in the fusion assay than for reducing plaque number or blocking hemadsorption indicate the particular efficacy of these sialic acid analogs in interfering with cell-cell fusion. In cell lines expressing influenza virus hemagglutinin (HA) as the only viral protein, we found that 4-GU-DANA had no effect on hemadsorption but did inhibit HA2b-red blood cell fusion, as judged by both lipid mixing and content mixing. Thus, 4-GU-DANA can interfere with both influenza virus- and HPF3-mediated fusion. The results indicate that (i) in HPF3, 4-GU-DANA and its analogs have an affinity not only for the neuraminidase active site of HN but also for sites important for receptor binding and cell fusion and (ii) sialic acid-based inhibitors of influenza virus neuraminidase can also exert a direct, negative effect on the fusogenic function of the other envelope protein, HA.
Journal of Cell Biology | 2013
Evgenia Leikina; Kamran Melikov; Sarmistha Sanyal; Santosh K. Verma; Bokkee Eun; Claudia Gebert; Karl Pfeifer; Vladimir A. Lizunov; Michael M. Kozlov; Leonid V. Chernomordik
Annexins A1 and A5 are important for initial lipid mixing, whereas subsequent stages of myoblast fusion depend on dynamin, phosphatidylinositol(4,5)bisphosphate, and cellular metabolism.
FEBS Letters | 1992
Evgenia Leikina; H.Ongun Onaran; Joshua Zimmerberg
The enveloped baculovirus⧹insect cell system has been used extensively for expression of recombinant proteins. including viral fusion proteins. We tested wild‐type baculovirus for endogenous fusion protein activity. Syncytia formation, dye transfer, and capacitance changes were observed after incubating infected Spodoptera frugiperda cells in acidic media, consistent with fusion protein activity. Only a short acidic pulse or 10 s is needed to trigger syncytia formation. Identical results were obtained with recombinant baculovirus. This new system convenient for studying pH activated cell‐cell fusion. However, using this enveloped virus to study the mechanism of recombinant fusion proteins requires caution.
Current Biology | 2010
Svetlana Glushakova; Glen Humphrey; Evgenia Leikina; Amanda Balaban; Jeffrey L. Miller; Joshua Zimmerberg
The apicomplexan parasite Plasmodium falciparum causes malignant malaria. The mechanism of parasite egress from infected erythrocytes that disseminate parasites in the host at the end of each asexual cycle is unknown. Two new stages of the egress program are revealed: (1) swelling of the parasitophorous vacuole accompanied by shrinkage of the erythrocyte compartment, and (2) poration of the host cell membrane seconds before erythrocyte rupture because of egress. Egress was inhibited in dehydrated cells from patients with sickle cell disease in accord with experimental dehydration of normal cells, suggesting that vacuole swelling involves intake of water from the erythrocyte compartment. Erythrocyte membrane poration occurs in relaxed cells, thus excluding involvement of osmotic pressure in this process. Poration does not depend on cysteine protease activity, because protease inhibition blocks egress but not poration, and poration is required for the parasite cycle because the membrane sealant P1107 interferes with egress. We suggest the following egress program: parasites initiate water influx into the vacuole from the erythrocyte cytosol to expand the vacuole for parasite separation and vacuole rupture upon its critical swelling. Separated parasites leave the erythrocyte by breaching its membrane, weakened by putative digestion of erythrocyte cytoskeleton and membrane poration.
Human Molecular Genetics | 2014
Katherine V. Bricceno; Tara Martinez; Evgenia Leikina; Stephanie Duguez; Terence A. Partridge; Leonid V. Chernomordik; Kenneth H. Fischbeck; Charlotte J. Sumner; Barrington G. Burnett
While spinal muscular atrophy (SMA) is characterized by motor neuron degeneration, it is unclear whether and how much survival motor neuron (SMN) protein deficiency in muscle contributes to the pathophysiology of the disease. There is increasing evidence from patients and SMA model organisms that SMN deficiency causes intrinsic muscle defects. Here we investigated the role of SMN in muscle development using muscle cell lines and primary myoblasts. Formation of multinucleate myotubes by SMN-deficient muscle cells is inhibited at a stage preceding plasma membrane fusion. We found increased expression and reduced induction of key muscle development factors, such as MyoD and myogenin, with differentiation of SMN-deficient cells. In addition, SMN-deficient muscle cells had impaired cell migration and altered organization of focal adhesions and the actin cytoskeleton. Partially restoring SMN inhibited the premature expression of muscle differentiation markers, corrected the cytoskeletal abnormalities and improved myoblast fusion. These findings are consistent with a role for SMN in myotube formation through effects on muscle differentiation and cell motility.
Biochemical Journal | 2011
Jean Philippe Richard; Evgenia Leikina; Ralf Langen; William Mike Henne; Margarita Popova; Tamas Balla; Harvey T. McMahon; Michael M. Kozlov; Leonid V. Chernomordik
Cell-to-cell fusion plays an important role in normal physiology and in different pathological conditions. Early fusion stages mediated by specialized proteins and yielding fusion pores are followed by a pore expansion stage that is dependent on cell metabolism and yet unidentified machinery. Because of a similarity of membrane bending in the fusion pore rim and in highly curved intracellular membrane compartments, in the present study we explored whether changes in the activity of the proteins that generate these compartments affect cell fusion initiated by protein fusogens of influenza virus and baculovirus. We raised the intracellular concentration of curvature-generating proteins in cells by either expressing or microinjecting the ENTH (epsin N-terminal homology) domain of epsin or by expressing the GRAF1 (GTPase regulator associated with focal adhesion kinase 1) BAR (Bin/amphiphysin/Rvs) domain or the FCHo2 (FCH domain-only protein 2) F-BAR domain. Each of these treatments promoted syncytium formation. Cell fusion extents were also influenced by treatments targeting the function of another curvature-generating protein, dynamin. Cell-membrane-permeant inhibitors of dynamin GTPase blocked expansion of fusion pores and dominant-negative mutants of dynamin influenced the syncytium formation extents. We also report that syncytium formation is inhibited by reagents lowering the content and accessibility of PtdIns(4,5)P2, an important regulator of intracellular membrane remodelling. Our findings indicate that fusion pore expansion at late stages of cell-to-cell fusion is mediated, directly or indirectly, by intracellular membrane-shaping proteins.
Journal of Cell Biology | 2017
Clari Valansi; David Moi; Evgenia Leikina; Elena Matveev; Martín Graña; Leonid V. Chernomordik; Héctor Romero; Pablo S. Aguilar; Benjamin Podbilewicz
Cell–cell fusion is inherent to sexual reproduction. Loss of HAPLESS 2/GENERATIVE CELL SPECIFIC 1 (HAP2/GCS1) proteins results in gamete fusion failure in diverse organisms, but their exact role is unclear. In this study, we show that Arabidopsis thaliana HAP2/GCS1 is sufficient to promote mammalian cell–cell fusion. Hemifusion and complete fusion depend on HAP2/GCS1 presence in both fusing cells. Furthermore, expression of HAP2 on the surface of pseudotyped vesicular stomatitis virus results in homotypic virus–cell fusion. We demonstrate that the Caenorhabditis elegans Epithelial Fusion Failure 1 (EFF-1) somatic cell fusogen can replace HAP2/GCS1 in one of the fusing membranes, indicating that HAP2/GCS1 and EFF-1 share a similar fusion mechanism. Structural modeling of the HAP2/GCS1 protein family predicts that they are homologous to EFF-1 and viral class II fusion proteins (e.g., Zika virus). We name this superfamily Fusexins: fusion proteins essential for sexual reproduction and exoplasmic merger of plasma membranes. We suggest a common origin and evolution of sexual reproduction, enveloped virus entry into cells, and somatic cell fusion.
The Prostate | 2015
Berna Uygur; Katrina Abramo; Evgenia Leikina; Calvin P.H. Vary; Lucy Liaw; Wen Shu Wu
PTEN/AKT signaling plays a key role in prostate cancer development and maintenance of prostate cancer stem cells. How other oncogenes or tumor suppressors interact with this pathway remain to be elucidated. SLUG is an zinc finger transcription factor of the Snail superfamily, and it promotes cancer metastasis and determines the mammary stem cell state.
Journal of Biological Chemistry | 2018
Santosh K. Verma; Evgenia Leikina; Kamran Melikov; Claudia Gebert; Vardit Kram; Marian F. Young; Berna Uygur; Leonid V. Chernomordik
Bone-resorbing multinucleated osteoclasts that play a central role in the maintenance and repair of our bones are formed from bone marrow myeloid progenitor cells by a complex differentiation process that culminates in fusion of mononuclear osteoclast precursors. In this study, we uncoupled the cell fusion step from both pre-fusion stages of osteoclastogenic differentiation and the post-fusion expansion of the nascent fusion connections. We accumulated ready-to-fuse cells in the presence of the fusion inhibitor lysophosphatidylcholine and then removed the inhibitor to study synchronized cell fusion. We found that osteoclast fusion required the dendrocyte-expressed seven transmembrane protein (DC-STAMP)-dependent non-apoptotic exposure of phosphatidylserine at the surface of fusion-committed cells. Fusion also depended on extracellular annexins, phosphatidylserine-binding proteins, which, along with annexin-binding protein S100A4, regulated fusogenic activity of syncytin 1. Thus, in contrast to fusion processes mediated by a single protein, such as epithelial cell fusion in Caenorhabditis elegans, the cell fusion step in osteoclastogenesis is controlled by phosphatidylserine-regulated activity of several proteins.