Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evgeniya N. Andreyeva is active.

Publication


Featured researches published by Evgeniya N. Andreyeva.


Genome Research | 2015

The Release 6 reference sequence of the Drosophila melanogaster genome

Roger A. Hoskins; Joseph W. Carlson; Kenneth H. Wan; Soo Park; Ivonne Mendez; Samuel E. Galle; Benjamin W. Booth; Barret D. Pfeiffer; Reed A. George; Robert Svirskas; Martin Krzywinski; Jacqueline E. Schein; Maria Carmela Accardo; Elisabetta Damia; Giovanni Messina; Maria Mendez-Lago; Beatriz de Pablos; Olga V. Demakova; Evgeniya N. Andreyeva; Lidiya V. Boldyreva; Marco A. Marra; A. Bernardo Carvalho; Patrizio Dimitri; Alfredo Villasante; Igor F. Zhimulev; Gerald M. Rubin; Gary H. Karpen; Susan E. Celniker

Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.


Chromosoma | 2003

Influence of the SuUR gene on intercalary heterochromatin in Drosophila melanogaster polytene chromosomes

Igor F. Zhimulev; E. S. Belyaeva; I. V. Makunin; Vincenzo Pirrotta; E. I. Volkova; Artyom A. Alekseyenko; Evgeniya N. Andreyeva; G. F. Makarevich; Lidiya V. Boldyreva; Roman A. Nanayev; Olga V. Demakova

Abstract. Salivary gland polytene chromosomes of Drosophila melanogaster have a reproducible set of intercalary heterochromatin (IH) sites, characterized by late DNA replication, underreplicated DNA, breaks and frequent ectopic contacts. The SuUR mutation has been shown to suppress underreplication, and wild-type SuUR protein is found at late-replicating IH sites and in pericentric heterochromatin. Here we show that the SuUR gene influences all four IH features. The SuUR mutation leads to earlier completion of DNA replication. Using transgenic strains with two, four or six additional SuUR+ doses (4–8×SuUR+) we show that wild-type SuUR is an enhancer of DNA underreplication, causing many late-replicating sites to become underreplicated. We map the underreplication sites and show that their number increases from 58 in normal strains (2×SuUR+) to 161 in 4–8×SuUR+ strains. In one of these new sites (1AB) DNA polytenization decreases from 100% in the wild type to 51%–85% in the 4×SuUR+ strain. In the 4×SuUR+ strain, 60% of the weak points coincide with the localization of Polycomb group (PcG) proteins. At the IH region 89E1–4 (the Bithorax complex), a typical underreplication site, the degree of underreplication increases with four doses of SuUR+ but the extent of the underreplicated region is the same as in wild type and corresponds to the region containing PcG binding sites. We conclude that the polytene chromosome regions known as IH are binding sites for SuUR protein and in many cases PcG silencing proteins. We propose that these stable silenced regions are late replicated and, in the presence of SuUR protein, become underreplicated.


International Review of Cytology-a Survey of Cell Biology | 2004

Polytene chromosomes: 70 years of genetic research.

Igor F. Zhimulev; E. S. Belyaeva; V. F. Semeshin; Dmitry E. Koryakov; S. A. Demakov; Olga V. Demakova; Galina V. Pokholkova; Evgeniya N. Andreyeva

Polytene chromosomes were described in 1881 and since 1934 they have served as an outstanding model for a variety of genetic experiments. Using the polytene chromosomes, numerous biological phenomena were discovered. First the polytene chromosomes served as a model of the interphase chromosomes in general. In polytene chromosomes, condensed (bands), decondensed (interbands), genetically active (puffs), and silent (pericentric and intercalary heterochromatin as well as regions subject to position effect variegation) regions were found and their features were described in detail. Analysis of the general organization of replication and transcription at the cytological level has become possible using polytene chromosomes. In studies of sequential puff formation it was found for the first time that the steroid hormone (ecdysone) exerts its action through gene activation, and that the process of gene activation upon ecdysone proceeds as a cascade. Namely on the polytene chromosomes a new phenomenon of cellular stress response (heat shock) was discovered. Subsequently chromatin boundaries (insulators) were discovered to flank the heat shock puffs. Major progress in solving the problems of dosage compensation and position effect variegation phenomena was mainly related to studies on polytene chromosomes. This review summarizes the current status of studies of polytene chromosomes and of various phenomena described using this successful model.


Chromosome Research | 2008

Local DNA underreplication correlates with accumulation of phosphorylated H2Av in the Drosophila melanogaster polytene chromosomes

Evgeniya N. Andreyeva; Tatyana D. Kolesnikova; E. S. Belyaeva; R. L. Glaser; Igor F. Zhimulev

DNA in Drosophila melanogaster polytene chromosomes is known to be locally underreplicated in both pericentric and intercalary heterochromatin. When the SuUR gene is mutant, complete and partial suppression of underreplication are observed in intercalary and pericentric heterochromatin, respectively; in contrast, overexpression of SuUR results in stronger underreplication. Using antibodies against phosphorylated histone H2Av and flies with different levels of SuUR expression, we demonstrated a clear correlation between the extent of underreplication in specific chromosome regions and the accumulation of H2Av phosphorylated at S137 (γ-H2AX) at the same sites. Phosphorylated H2Av is a well-established marker of DNA double-stranded breaks (DSB). Our data thus argue that DNA underreplication leads to DSBs and that DSBs accumulate as salivary gland cells progress throughout repeated endocycles. We speculate that ligation of free double-stranded DNA termini causes the formation of ectopic contacts between the underreplicated regions in heterochromatin.


Chromosoma | 2008

Intercalary heterochromatin in polytene chromosomes of Drosophila melanogaster

E. S. Belyaeva; Evgeniya N. Andreyeva; Stepan N. Belyakin; E. I. Volkova; I. F. Zhimulev

Intercalary heterochromatin consists of extended chromosomal domains which are interspersed throughout the euchromatin and contain silent genetic material. These domains comprise either clusters of functionally unrelated genes or tandem gene duplications and possibly stretches of noncoding sequences. Strong repression of genetic activity means that intercalary heterochromatin displays properties that are normally attributable to classic pericentric heterochromatin: high compaction, late replication and underreplication in polytene chromosomes, and the presence of heterochromatin-specific proteins. Late replication and underreplication occurs when the suppressor of underreplication protein is present in intercalary heterochromatic regions. Intercalary heterochromatin underreplication in polytene chromosomes results in free double-stranded ends of DNA molecules; ligation of these free ends is the most likely mechanism for ectopic pairing between intercalary heterochromatic and pericentric heterochromatic regions. No support has been found for the view that the frequency of chromosome aberrations is elevated in intercalary heterochromatin.


Journal of Cell Science | 2008

Interaction between the Drosophila heterochromatin proteins SUUR and HP1

Alexey V. Pindyurin; Lidiya V. Boldyreva; Victor V. Shloma; Tatiana D. Kolesnikova; Galina V. Pokholkova; Evgeniya N. Andreyeva; Elena N. Kozhevnikova; Igor G. Ivanoschuk; Ekaterina A. Zarutskaya; S. A. Demakov; Andrey A. Gorchakov; E. S. Belyaeva; Igor F. Zhimulev

SUUR (Suppressor of Under-Replication) protein is responsible for late replication and, as a consequence, for DNA underreplication of intercalary and pericentric heterochromatin in Drosophila melanogaster polytene chromosomes. However, the mechanism by which SUUR slows down the replication process is not clear. To identify possible partners for SUUR we performed a yeast two-hybrid screen using full-length SUUR as bait. This identified HP1, the well-studied heterochromatin protein, as a strong SUUR interactor. Furthermore, we have determined that the central region of SUUR is necessary and sufficient for interaction with the C-terminal part of HP1, which contains the hinge and chromoshadow domains. In addition, recruitment of SUUR to ectopic HP1 sites on chromosomes provides evidence for their association in vivo. Indeed, we found that the distributions of SUUR and HP1 on polytene chromosomes are interdependent: both absence and overexpression of HP1 prevent SUUR from chromosomal binding, whereas SUUR overexpression causes redistribution of HP1 to numerous sites occupied by SUUR. Finally, HP1 binds to intercalary heterochromatin when histone methyltransferase activity of SU(VAR)3-9 is increased. We propose that interaction with HP1 is crucial for the association of SUUR with chromatin.


Cell Reports | 2014

DNA Copy-Number Control through Inhibition of Replication Fork Progression

Jared T. Nordman; Elena N. Kozhevnikova; C. Peter Verrijzer; Alexey V. Pindyurin; Evgeniya N. Andreyeva; Victor V. Shloma; Igor F. Zhimulev; Terry L. Orr-Weaver

Proper control of DNA replication is essential to ensure faithful transmission of genetic material and prevent chromosomal aberrations that can drive cancer progression and developmental disorders. DNA replication is regulated primarily at the level of initiation and is under strict cell-cycle regulation. Importantly, DNA replication is highly influenced by developmental cues. In Drosophila, specific regions of the genome are repressed for DNA replication during differentiation by the SNF2 domain-containing protein SUUR through an unknown mechanism. We demonstrate that SUUR is recruited to active replication forks and mediates the repression of DNA replication by directly inhibiting replication fork progression instead of functioning as a replication fork barrier. Mass spectrometry identification of SUUR-associated proteins identified the replicative helicase member CDC45 as a SUUR-associated protein, supporting a role for SUUR directly at replication forks. Our results reveal that control of eukaryotic DNA copy number can occur through the inhibition of replication fork progression.


Genetica | 2003

Intercalary heterochromatin in Drosophila melanogaster polytene chromosomes and the problem of genetic silencing

Igor F. Zhimulev; E. S. Belyaeva; I. V. Makunin; Vincenzo Pirrotta; V. F. Semeshin; Artyom A. Alekseyenko; Stepan N. Belyakin; E. I. Volkova; Dmitry E. Koryakov; Evgeniya N. Andreyeva; Olga V. Demakova; Irina V. Kotlikova; Tatyana D. Kolesnikova; Lidiya V. Boldyreva; Roman A. Nanayev

The morphological characteristics of intercalary heterochromatin (IH) are compared with those of other types of silenced chromatin in the Drosophila melanogaster genome: pericentric heterochromatin (PH) and regions subject to position effect variegation (PEV). We conclude that IH regions in polytene chromosomes are binding sites of silencing complexes such as PcG complexes and of SuUR protein. Binding of these proteins results in the appearance of condensed chromatin and late replication of DNA, which in turn may result in DNA underreplication. IH and PH as well as regions subject to PEV have in common the condensed chromatin appearance, the localization of specific proteins, late replication, underreplication in polytene chromosomes, and ectopic pairing.


Genes & Development | 2017

Regulatory functions and chromatin loading dynamics of linker histone H1 during endoreplication in Drosophila

Evgeniya N. Andreyeva; Travis J. Bernardo; Tatyana D. Kolesnikova; Xingwu Lu; Lyubov A. Yarinich; Boris Bartholdy; Xiaohan Guo; Olga V. Posukh; Sean Healton; Michael A. Willcockson; Alexey V. Pindyurin; Igor F. Zhimulev; Arthur I. Skoultchi; Dmitry V. Fyodorov

Eukaryotic DNA replicates asynchronously, with discrete genomic loci replicating during different stages of S phase. Drosophila larval tissues undergo endoreplication without cell division, and the latest replicating regions occasionally fail to complete endoreplication, resulting in underreplicated domains of polytene chromosomes. Here we show that linker histone H1 is required for the underreplication (UR) phenomenon in Drosophila salivary glands. H1 directly interacts with the Suppressor of UR (SUUR) protein and is required for SUUR binding to chromatin in vivo. These observations implicate H1 as a critical factor in the formation of underreplicated regions and an upstream effector of SUUR. We also demonstrate that the localization of H1 in chromatin changes profoundly during the endocycle. At the onset of endocycle S (endo-S) phase, H1 is heavily and specifically loaded into late replicating genomic regions and is then redistributed during the course of endoreplication. Our data suggest that cell cycle-dependent chromosome occupancy of H1 is governed by several independent processes. In addition to the ubiquitous replication-related disassembly and reassembly of chromatin, H1 is deposited into chromatin through a novel pathway that is replication-independent, rapid, and locus-specific. This cell cycle-directed dynamic localization of H1 in chromatin may play an important role in the regulation of DNA replication timing.


Chromosome Research | 2002

Immunogold electron microscope localization of proteins in Drosophila polytene chromosomes: applications and limitations of the method

V. F. Semeshin; Evgeniya N. Andreyeva; Victor V. Shloma; Harald Saumweber; Igor F. Zhimulev

V.F. Semeshin1, E.N. Andreyeva1, V.V. Shloma1, H. Saumweber2 & I.F. Zhimulev1 1Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Tel: (+7)3832 33 39 12; Fax: (+7) 3832 33 12 78; E-mail: [email protected]; 2Humboldt University, Berlin, The Institute of Biology, Deptartament of Cytogenetics, Chausseestr. 117, 10115 Berlin, Germany

Collaboration


Dive into the Evgeniya N. Andreyeva's collaboration.

Top Co-Authors

Avatar

Igor F. Zhimulev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. S. Belyaeva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Alexey V. Pindyurin

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Olga V. Demakova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Alena V. Razuvaeva

Novosibirsk State University

View shared research outputs
Top Co-Authors

Avatar

Alina F. Anders

Novosibirsk State University

View shared research outputs
Top Co-Authors

Avatar

Anton Strunov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. I. Volkova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge