Evgeny A. Stepanov
University of Trento
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Evgeny A. Stepanov.
international conference on data mining | 2011
Evgeny A. Stepanov; Giuseppe Riccardi
Questionnaire-based surveys and on-line product reviews resemble each other in that they both have user comments and satisfaction ratings. Since a comment might be a general opinion about a product or only one or a set of its attributes, in which case the text might not reflect the rating, surveys and reviews share the problem of pairing free-text comments with these ratings. To train accurate models for automatic evaluation of products from free-text, it is important to distinguish these two kinds of opinions. In this paper we present experiments on detecting general opinions that target a product as a whole, thus, reflect the user sentiments better. The task is different from subjectivity detection, since the goal is to detect generality of an opinion regardless of the rest of the documents being opinionated or not. The task complements feature-based opinion analysis and opinion polarity classification, since it can be applied as a preceding step to both tasks. We show that when used as a classification feature user ratings are not useful in the general opinion detection task. However, they are effective in predicting the polarity of a comment once it is identified as a general opinion.
conference on computational natural language learning | 2015
Evgeny A. Stepanov; Giuseppe Riccardi; Ali Orkan Bayer
Penn Discourse Treebank style discourse parsing is a composite task of identifying discourse relations (explicit or nonexplicit), their connective and argument spans, and assigning a sense to these relations from the hierarchy of senses. In this paper we describe University of Trento parser submitted to CoNLL 2015 Shared Task on Shallow Discourse Parsing. The span detection tasks for explicit relations are cast as token-level sequence labeling. The argument span decisions are conditioned on relations’ being intra- or intersentential. Non-explicit relation detection and sense assignment tasks are cast as classification. In the end-to-end closedtrack evaluation, the parser ranked second with a global F-measure of 0.2184
conference of the international speech communication association | 2016
Shammur Absar Chowdhury; Evgeny A. Stepanov; Giuseppe Riccardi
User satisfaction is an important aspect of the user experience while interacting with objects, systems or people. Traditionally user satisfaction is evaluated a-posteriori via spoken or written questionnaires or interviews. In automatic behavioral analysis we aim at measuring the user emotional states and its descriptions as they unfold during the interaction. In our approach, user satisfaction is modeled as the final state of a sequence of emotional states and given ternary values positive, negative, neutral. In this paper, we investigate the discriminating power of turn-taking in predicting user satisfaction in spoken conversations. Turn-taking is used for discourse organization of a conversation by means of explicit phrasing, intonation, and pausing. In this paper, we train different characterization of turn-taking, such as competitiveness of the speech overlaps. To extract turn-taking features we design a turn segmentation and labeling system that incorporates lexical and acoustic information. Given a human-human spoken dialog, our system automatically infers any of the three values of the state of the user satisfaction. We evaluate the classification system on real-life call-center human-human dialogs. The comparative performance analysis shows that the contribution of the turn-taking features outperforms both prosodic and lexical features.
ieee automatic speech recognition and understanding workshop | 2013
Evgeny A. Stepanov; Ilya Kashkarev; Ali Orkan Bayer; Giuseppe Riccardi; Arindam Ghosh
Automatic cross-language Spoken Language Understanding porting is plagued by two limitations. First, SLU are usually trained on limited domain corpora. Second, language pair resources (e.g. aligned corpora) are scarce or unmatched in style (e.g. news vs. conversation). We present experiments on automatic style adaptation of the input for the translation systems and their output for SLU. We approach the problem of scarce aligned data by adapting the available parallel data to the target domain using limited in-domain and larger web crawled close-to-domain corpora. SLU performance is optimized by reranking its output with Recurrent Neural Network-based joint language model. We evaluate end-to-end SLU porting on close and distant language pairs: Spanish - Italian and Turkish - Italian; and achieve significant improvements both in translation quality and SLU performance.
Proceedings of the CoNLL-16 shared task | 2016
Niko Schenk; Christian Chiarcos; Kathrin Donandt; Samuel Rönnqvist; Evgeny A. Stepanov; Giuseppe Riccardi
We describe our contribution to the CoNLL 2016 Shared Task on shallow discourse parsing.1 Our system extends the two best parsers from previous year’s competition by integration of a novel implicit sense labeling component. It is grounded on a highly generic, language-independent feedforward neural network architecture incorporating weighted word embeddings for argument spans which obviates the need for (traditional) hand-crafted features. Despite its simplicity, our system overall outperforms all results from 2015 on 5 out of 6 evaluation sets for English and achieves an absolute improvement in F1-score of 3.2% on the PDTB test section for non-explicit sense classification.
annual meeting of the special interest group on discourse and dialogue | 2015
Benoit Favre; Evgeny A. Stepanov; Jérémy Trione; Frédéric Béchet; Giuseppe Riccardi
This paper describes the results of the Call Centre Conversation Summarization task at Multiling’15. The CCCS task consists in generating abstractive synopses from call centre conversations between a caller and an agent. Synopses are summaries of the problem of the caller, and how it is solved by the agent. Generating them is a very challenging task given that deep analysis of the dialogs and text generation are necessary. Three languages were addressed: French, Italian and English translations of conversations from those two languages. The official evaluation metric was ROUGE-2. Two participants submitted a total of four systems which had trouble beating the extractive baselines. The datasets released for the task will allow more research on abstractive dialog summarization.
Proceedings of the 5th International Workshop on Health Text Mining and Information Analysis (Louhi) | 2014
Evgeny A. Stepanov; Giuseppe Riccardi
Discourse relation parsing is an important task with the goal of understanding text beyond the sentence boundaries. With the availability of annotated corpora (Penn Discourse Treebank) statistical discourse parsers were developed. In the literature it was shown that the discourse parsing subtasks of discourse connective detection and relation sense classification do not generalize well across domains. The biomedical domain is of particular interest due to the availability of Biomedical Discourse Relation Bank (BioDRB). In this paper we present cross-domain evaluation of PDTB trained discourse relation parser and evaluate feature-level domain adaptation techniques on the argument span extraction subtask. We demonstrate that the subtask generalizes well across domains.
international conference on acoustics, speech, and signal processing | 2010
Marco Dinarelli; Evgeny A. Stepanov; Sebastian Varges; Giuseppe Riccardi
We present a call routing application for complex problem solving tasks. Up to date work on call routing has been mainly dealing with call-type classification. In this paper we take call routing further: Initial call classification is done in parallel with a robust statistical Spoken Language Understanding module. This is followed by a dialogue to elicit further task-relevant details from the user before passing on the call. The dialogue capability also allows us to obtain clarifications of the initial classifier guess. Based on an evaluation, we show that conducting a dialogue significantly improves upon call routing based on call classification alone. We present both subjective and objective evaluation results of the system according to standard metrics on real users.
international conference on acoustics, speech, and signal processing | 2016
Giuseppe Riccardi; Evgeny A. Stepanov; Shammur Absar Chowdhury
Discourse parsing is an important task in Language Understanding with applications to human-human and human-machine communication modeling. However, most of the research has focused on written text, and parsers heavily rely on syntactic parsers that themselves have low performance on dialog data. In our work, we address the problem of analyzing the semantic relations between discourse units in human-human spoken conversations. In particular, in this paper we focus on the detection of discourse connectives which are the predicate of such relations. The discourse relations are drawn from the Penn Discourse Treebank annotation model and adapted to a domain-specific Italian human-human spoken conversations. We study the relevance of lexical and acoustic context in predicting discourse connectives. We observe that both lexical and acoustic context have mixed effect on the prediction of specific connectives. While the oracle of using lexical and acoustic contextual feature combinations is F1 = 68.53, the lexical context alone significantly outperforms the baseline by more than 10 points with F1 = 64.93.
european signal processing conference | 2016
Juan Manuel Mayor Torres; Arindam Ghosh; Evgeny A. Stepanov; Giuseppe Riccardi
Photoplethysmography (PPG) is a simple, unobtrusive and low-cost technique for measuring blood volume pulse (BVP) used in heart-rate (HR) estimation. However, PPG based heart-rate monitoring devices are often affected by motion artifacts in on-the-go scenarios, and can yield a noisy BVP signal reporting erroneous HR values. Recent studies have proposed spectral decomposition techniques (e.g. M-FOCUSS, Joint-Sparse-Spectrum) to reduce motion artifacts and increase HR estimation accuracy, but at the cost of high computational load. The singular-value-decomposition and recursive calculations present in these approaches are not feasible for the implementation in real-time continuous-monitoring scenarios. In this paper, we propose an efficient HR estimation method based on a combination of fast-ICA, RLS and BHW filter stages that avoids sparse signal reconstruction, while maintaining a high HR estimation accuracy. The proposed method outperforms the state-of-the-art systems on the publicly available TROIKA data set both in terms of HR estimation accuracy (absolute error of 2.25 ± 1.93 bpm) and computational load.