Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evgeny Pavlov is active.

Publication


Featured researches published by Evgeny Pavlov.


Journal of Cell Biology | 2001

A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast

Evgeny Pavlov; Muriel Priault; Dawn Pietkiewicz; Emily H. Cheng; Bruno Antonsson; Stéphen Manon; Stanley J. Korsmeyer; Carmen A. Mannella; Kathleen W. Kinnally

During apoptosis, proapoptotic factors are released from mitochondria by as yet undefined mechanisms. Patch-clamping of mitochondria and proteoliposomes formed from mitochondrial outer membranes of mammalian (FL5.12) cells has uncovered a novel ion channel whose activity correlates with onset of apoptosis. The pore diameter inferred from the largest conductance state of this channel is ∼4 nm, sufficient to allow diffusion of cytochrome c and even larger proteins. The activity of the channel is affected by Bcl-2 family proteins in a manner consistent with their pro- or antiapoptotic properties. Thus, the channel activity correlates with presence of proapoptotic Bax in the mitochondrial outer membrane and is absent in mitochondria from cells overexpressing antiapoptotic Bcl-2. Also, a similar channel activity is found in mitochondrial outer membranes of yeast expressing human Bax. These findings implicate this channel, named mitochondrial apoptosis–induced channel, as a candidate for the outer-membrane pore through which cytochrome c and possibly other factors exit mitochondria during apoptosis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death

Andrey Y. Abramov; Cresson D. Fraley; Catherine Diao; Robert J. Winkfein; Michael A. Colicos; Michael R. Duchen; Robert J. French; Evgeny Pavlov

Polyphosphate (polyP) consists of tens to hundreds of phosphates, linked by ATP-like high-energy bonds. Although polyP is present in mammalian mitochondria, its physiological roles there are obscure. Here, we examine the involvement of polyP in mitochondrial energy metabolism and ion transport. We constructed a vector to express a mitochondrially targeted polyphosphatase, along with a GFP fluorescent tag. Specific reduction of mitochondrial polyP, by polyphosphatase expression, significantly modulates mitochondrial bioenergetics, as indicated by the reduction of inner membrane potential and increased NADH levels. Furthermore, reduction of polyP levels increases mitochondrial capacity to accumulate calcium and reduces the likelihood of the calcium-induced mitochondrial permeability transition, a central event in many types of necrotic cell death. This confers protection against cell death, including that induced by β-amyloid peptide, a pathogenic agent in Alzheimers disease. These results demonstrate a crucial role played by polyP in mitochondrial function of mammalian cells.


Journal of Biological Chemistry | 2010

Inorganic polyphosphate and energy metabolism in mammalian cells.

Evgeny Pavlov; Roozbeh Aschar-Sobbi; Michelangelo Campanella; Raymond J. Turner; María R. Gómez-García; Andrey Y. Abramov

Inorganic polyphosphate (poly P) is a polymer made from as few as 10 to several hundred phosphate molecules linked by phosphoanhydride bonds similar to ATP. Poly P is ubiquitous in all mammalian organisms, where it plays multiple physiological roles. The metabolism of poly P in mammalian organisms is not well understood. We have examined the mechanism of poly P production and the role of this polymer in cell energy metabolism. Poly P levels in mitochondria and intact cells were estimated using a fluorescent molecular probe, 4′,6-diamidino-2-phenylindole. Poly P levels were dependent on the metabolic state of the mitochondria. Poly P levels were increased by substrates of respiration and in turn reduced by mitochondrial inhibitor (rotenone) or an uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone). Oligomycin, an inhibitor of mitochondrial ATP-synthase, blocked the production of poly P. Enzymatic depletion of poly P from cells significantly altered the rate of ATP metabolism. We propose the existence of a feedback mechanism where poly P production and cell energy metabolism regulate each other.


PLOS ONE | 2009

Inorganic polyphosphate modulates TRPM8 channels

Eleonora Zakharian; Baskaran Thyagarajan; Robert J. French; Evgeny Pavlov; Tibor Rohacs

Polyphosphate (polyP) is an inorganic polymer built of tens to hundreds of phosphates, linked by high-energy phosphoanhydride bonds. PolyP forms complexes and modulates activities of many proteins including ion channels. Here we investigated the role of polyP in the function of the transient receptor potential melastatin 8 (TRPM8) channel. Using whole-cell patch-clamp and fluorescent calcium measurements we demonstrate that enzymatic breakdown of polyP by exopolyphosphatase (scPPX1) inhibits channel activity in human embryonic kidney and F-11 neuronal cells expressing TRPM8. We demonstrate that the TRPM8 channel protein is associated with polyP. Furthermore, addition of scPPX1 altered the voltage-dependence and blocked the activity of the purified TRPM8 channels reconstituted into planar lipid bilayers, where the activity of the channel was initiated by cold and menthol in the presence of phosphatidylinositol 4,5-biphosphate (PtdIns(4,5)P2). The biochemical analysis of the TRPM8 protein also uncovered the presence of poly-(R)-3-hydroxybutyrate (PHB), which is frequently associated with polyP. We conclude that the TRPM8 protein forms a stable complex with polyP and its presence is essential for normal channel activity.


Aging Cell | 2011

Membrane cholesterol content plays a key role in the neurotoxicity of β-amyloid: implications for Alzheimer's disease.

Andrey Y. Abramov; Maksim Ionov; Evgeny Pavlov; Michael R. Duchen

Beta amyloid (βA) plays a central role in the pathogenesis of the most common and devastating neurodegenerative disorder, Alzheimer’s disease (AD). The mechanisms of βA neurotoxicity remain controversial, but include dysregulation of calcium homeostasis and oxidative stress. A large body of data suggest that cholesterol plays a significant role in AD. In mixed cultures containing hippocampal neurons and astrocytes, we have shown that neurotoxic βA peptides (1–42 and 25–35) cause sporadic cytosolic calcium ([Ca2+]c) signals in astrocytes but not in neurons, initiating a cascade that ends in neuronal death. We now show, using the cholesterol‐sensitive fluorescent probe, Filipin, that membrane cholesterol is significantly higher in astrocytes than in neurons and mediates the selective response of astrocytes to βA. Thus, lowering [cholesterol] using mevastatin, methyl‐β‐cyclodextrin or filipin prevented the βA‐induced [Ca2+]c signals, while increased membrane [cholesterol] increased βA‐induced [Ca2+]c signals in both neurons and astrocytes. Addition of βA to lipid bilayers caused the appearance of a conductance that was significantly higher in membranes containing cholesterol. Increasing membrane [cholesterol] significantly increased βA‐induced neuronal and astrocytic death. We conclude that a high membrane [cholesterol] promotes βA incorporation into membranes and increased [Ca2+]c leading to cell death.


The Journal of General Physiology | 2012

Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes.

Lea K. Seidlmayer; María R. Gómez-García; Lothar A. Blatter; Evgeny Pavlov; Elena N. Dedkova

Mitochondrial dysfunction caused by excessive Ca2+ accumulation is a major contributor to cardiac cell and tissue damage during myocardial infarction and ischemia–reperfusion injury (IRI). At the molecular level, mitochondrial dysfunction is induced by Ca2+-dependent opening of the mitochondrial permeability transition pore (mPTP) in the inner mitochondrial membrane, which leads to the dissipation of mitochondrial membrane potential (ΔΨm), disruption of adenosine triphosphate production, and ultimately cell death. Although the role of Ca2+ for induction of mPTP opening is established, the exact molecular mechanism of this process is not understood. The aim of the present study was to test the hypothesis that the adverse effect of mitochondrial Ca2+ accumulation is mediated by its interaction with inorganic polyphosphate (polyP), a polymer of orthophosphates linked by phosphoanhydride bonds. We found that cardiac mitochondria contained significant amounts (280 ± 60 pmol/mg of protein) of short-chain polyP with an average length of 25 orthophosphates. To test the role of polyP for mPTP activity, we investigated kinetics of Ca2+ uptake and release, ΔΨm and Ca2+-induced mPTP opening in polyP-depleted mitochondria. polyP depletion was achieved by mitochondria-targeted expression of a polyP-hydrolyzing enzyme. Depletion of polyP in mitochondria of rabbit ventricular myocytes led to significant inhibition of mPTP opening without affecting mitochondrial Ca2+ concentration by itself. This effect was observed when mitochondrial Ca2+ uptake was stimulated by increasing cytosolic [Ca2+] in permeabilized myocytes mimicking mitochondrial Ca2+ overload observed during IRI. Our findings suggest that inorganic polyP is a previously unrecognized major activator of mPTP. We propose that the adverse effect of polyphosphate might be caused by its ability to form stable complexes with Ca2+ and directly contribute to inner mitochondrial membrane permeabilization.


Journal of Bioenergetics and Biomembranes | 2001

Palmitic and Stearic Acids Bind Ca2+ with High Affinity and Form Nonspecific Channels in Black-Lipid Membranes. Possible Relation to Ca2+-Activated Mitochondrial Pores

G. D. Mironova; Odile Gateau-Roesch; Christiane Levrat; Elena N. Gritsenko; Evgeny Pavlov; Alissa V. Lazareva; Elena Limarenko; Catherine Rey; Pierre Louisot; Nils Erik L Saris

A mitochondrial hydrophobic component that forms Ca2+-induced nonspecific ion channels in black-lipid membranes (Mironova et al., 1997) has been purified and its nature elucidated. It consists of long-chain saturated fatty acids—mainly palmitic and stearic. These fatty acids, similar to the mitochondrial hydrophobic component, bind Ca2+ with high affinity in comparison with unsaturated fatty acids, saturated fatty acids with shorter aliphatic chains, phospholipids, and other lipids. Ca2+-binding is inhibited by Mg2+ but not by K+. For palmitic acid, the Kd for Ca2+ was 5 μM at pH 8.5 and 15 μM at pH 7.5, with the Bmax of 0.48 ± 0.08 mmol/g. This corresponds to one Ca2+ ion for eight palmitic acid molecules. The data of IR spectroscopy confirm that Ca2+ does not form ionic bonds with palmitic and stearic acids under hydrophobic conditions. It has been found that in the presence of Ca2+, palmitic and stearic acids, but not unsaturated FFA induce a nonspecific permeability in black-lipid membranes. Addition of Ca2+ in order to induce the permeability transition, increases the extractable amount of palmitic and stearic acids, the effect being prevented by a phospholipase A2 inhibitor. The possible involvement of palmitic and stearic acids in the mitochondrial nonspecific permeability is discussed.


Cardiovascular Research | 2015

Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate.

Lea K. Seidlmayer; Vanessa V. Juettner; Sarah Kettlewell; Evgeny Pavlov; Lothar A. Blatter; Elena N. Dedkova

AIMS The mitochondrial permeability transition pore (mPTP) plays a central role for tissue damage and cell death during ischaemia-reperfusion (I/R). We investigated the contribution of mitochondrial inorganic polyphosphate (polyP), a potent activator of Ca(2+)-induced mPTP opening, towards mPTP activation and cardiac cell death in I/R. METHODS AND RESULTS A significant increase in mitochondrial free calcium concentration ([Ca(2+)]m), reactive oxygen species (ROS) generation, mitochondrial membrane potential depolarization (ΔΨm), and mPTP activity, but no cell death, was observed after 20 min of ischaemia. The [Ca(2+)]m increase during ischaemia was partially prevented by the mitochondrial Ca(2+) uniporter (MCU) inhibitor Ru360 and completely abolished by the combination of Ru360 and the ryanodine receptor type 1 blocker dantrolene, suggesting two complimentary Ca(2+) uptake mechanisms. In the absence of Ru360 and dantrolene, mPTP closing by polyP depletion or CSA decreased mitochondrial Ca(2+) uptake, suggesting that during ischaemia Ca(2+) can enter mitochondria through mPTP. During reperfusion, a burst of endogenous polyP production coincided with a decrease in [Ca(2+)]m, a decline in superoxide generation, and an acceleration of hydrogen peroxide (H2O2) production. An increase in H2O2 correlated with restoration of mitochondrial pHm and an increase in cell death. mPTP opening and cell death on reperfusion were prevented by antioxidants Trolox and MnTBAP [Mn (III) tetrakis (4-benzoic acid) porphyrin chloride]. Enzymatic polyP depletion did not affect mPTP opening during reperfusion, but increased ROS generation and cell death, suggesting that polyP plays a protective role in cellular stress response. CONCLUSIONS Transient Ca(2+)/polyP-mediated mPTP opening during ischaemia may serve to protect cells against cytosolic Ca(2+) overload, whereas ROS/pH-mediated sustained mPTP opening on reperfusion induces cell death.


Environmental Science & Technology | 2011

Direct Quantification of Inorganic Polyphosphate in Microbial Cells Using 4 '-6-Diamidino-2-Phenylindole (DAPI)

Anna N. Kulakova; Darragh Hobbs; Matthew Smithen; Evgeny Pavlov; Jack A. Gilbert; John P. Quinn; John W. McGrath

Inorganic polyphosphate (polyP) is increasingly being recognized as an important phosphorus sink within the environment, playing a central role in phosphorus exchange and phosphogenesis. Yet despite the significant advances made in polyP research there is a lack of rapid and efficient analytical approaches for the quantification of polyP accumulation in microbial cultures and environmental samples. A major drawback is the need to extract polyP from cells prior to analysis. Due to extraction inefficiencies this can lead to an underestimation of both intracellular polyP levels and its environmental pool size: we observed 23-58% loss of polyP using standard solutions and current protocols. Here we report a direct fluorescence based DAPI assay system which removes the requirement for prior polyP extraction before quantification. This increased the efficiency of polyP detection by 28-55% in microbial cultures suggesting quantitative measurement of the intracellular polyP pool. It provides a direct polyP assay which combines quantification capability with technical simplicity. This is an important step forward in our ability to explore the role of polyP in cellular biology and biogeochemical nutrient cycling.


Journal of Cell Science | 2016

Ca2+ is a key factor in α-synuclein-induced neurotoxicity

Plamena R. Angelova; Marthe H.R. Ludtmann; Mathew H. Horrocks; Alexander Negoda; Nunilo Cremades; David Klenerman; Christopher M. Dobson; Nicholas W. Wood; Evgeny Pavlov; Sonia Gandhi; Andrey Y. Abramov

ABSTRACT Aggregation of α-synuclein leads to the formation of oligomeric intermediates that can interact with membranes to form pores. However, it is unknown how this leads to cell toxicity in Parkinsons disease. We investigated the species-specific effects of α-synuclein on Ca2+ signalling in primary neurons and astrocytes using live neuronal imaging and electrophysiology on artificial membranes. We demonstrate that α-synuclein induces an increase in basal intracellular Ca2+ in its unfolded monomeric state as well as in its oligomeric state. Electrophysiology of artificial membranes demonstrated that α-synuclein monomers induce irregular ionic currents, whereas α-synuclein oligomers induce rare discrete channel formation events. Despite the ability of monomeric α-synuclein to affect Ca2+ signalling, it is only the oligomeric form of α-synuclein that induces cell death. Oligomer-induced cell death was abolished by the exclusion of extracellular Ca2+, which prevented the α-synuclein-induced Ca2+ dysregulation. The findings of this study confirm that α-synuclein interacts with membranes to affect Ca2+ signalling in a structure-specific manner and the oligomeric β-sheet-rich α-synuclein species ultimately leads to Ca2+ dysregulation and Ca2+-dependent cell death. Summary: Monomeric and oligomeric α-synuclein induce Ca2+ signal in neurons and astrocytes by incorporating into the membrane.

Collaboration


Dive into the Evgeny Pavlov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eleonora Zakharian

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Andrey Y. Abramov

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena N. Dedkova

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lea K. Seidlmayer

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lothar A. Blatter

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lusine Demirkhanyan

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge