Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evimaria Terzi is active.

Publication


Featured researches published by Evimaria Terzi.


international conference on management of data | 2008

Towards identity anonymization on graphs

Kun Liu; Evimaria Terzi

The proliferation of network data in various application domains has raised privacy concerns for the individuals involved. Recent studies show that simply removing the identities of the nodes before publishing the graph/social network data does not guarantee privacy. The structure of the graph itself, and in its basic form the degree of the nodes, can be revealing the identities of individuals. To address this issue, we study a specific graph-anonymization problem. We call a graph k-degree anonymous if for every node v, there exist at least k-1 other nodes in the graph with the same degree as v. This definition of anonymity prevents the re-identification of individuals by adversaries with a priori knowledge of the degree of certain nodes. We formally define the graph-anonymization problem that, given a graph G, asks for the k-degree anonymous graph that stems from G with the minimum number of graph-modification operations. We devise simple and efficient algorithms for solving this problem. Our algorithms are based on principles related to the realizability of degree sequences. We apply our methods to a large spectrum of synthetic and real datasets and demonstrate their efficiency and practical utility.


very large data bases | 2008

Detecting anomalous access patterns in relational databases

Ashish Kamra; Evimaria Terzi; Elisa Bertino

A considerable effort has been recently devoted to the development of Database Management Systems (DBMS) which guarantee high assurance and security. An important component of any strong security solution is represented by Intrusion Detection (ID) techniques, able to detect anomalous behavior of applications and users. To date, however, there have been few ID mechanisms proposed which are specifically tailored to function within the DBMS. In this paper, we propose such a mechanism. Our approach is based on mining SQL queries stored in database audit log files. The result of the mining process is used to form profiles that can model normal database access behavior and identify intruders. We consider two different scenarios while addressing the problem. In the first case, we assume that the database has a Role Based Access Control (RBAC) model in place. Under a RBAC system permissions are associated with roles, grouping several users, rather than with single users. Our ID system is able to determine role intruders, that is, individuals while holding a specific role, behave differently than expected. An important advantage of providing an ID technique specifically tailored to RBAC databases is that it can help in protecting against insider threats. Furthermore, the existence of roles makes our approach usable even for databases with large user population. In the second scenario, we assume that there are no roles associated with users of the database. In this case, we look directly at the behavior of the users. We employ clustering algorithms to form concise profiles representing normal user behavior. For detection, we either use these clustered profiles as the roles or employ outlier detection techniques to identify behavior that deviates from the profiles. Our preliminary experimental evaluation on both real and synthetic database traces shows that our methods work well in practical situations.


knowledge discovery and data mining | 2010

Finding effectors in social networks

Theodoros Lappas; Evimaria Terzi; Dimitrios Gunopulos; Heikki Mannila

Assume a network (V,E) where a subset of the nodes in V are active. We consider the problem of selecting a set of k active nodes that best explain the observed activation state, under a given information-propagation model. We call these nodes effectors. We formally define the k-Effectors problem and study its complexity for different types of graphs. We show that for arbitrary graphs the problem is not only NP-hard to solve optimally, but also NP-hard to approximate. We also show that, for some special cases, the problem can be solved optimally in polynomial time using a dynamic-programming algorithm. To the best of our knowledge, this is the first work to consider the k-Effectors problem in networks. We experimentally evaluate our algorithms using the DBLP co-authorship graph, where we search for effectors of topics that appear in research papers.


annual computer security applications conference | 2005

Intrusion detection in RBAC-administered databases

Elisa Bertino; Evimaria Terzi; Ashish Kamra; Athena Vakali

A considerable effort has been recently devoted to the development of database management systems (DBMS) which guarantee high assurance security and privacy. An important component of any strong security solution is represented by intrusion detection (ID) systems, able to detect anomalous behavior by applications and users. To date, however, there have been very few ID mechanisms specifically tailored to database systems. In this paper, we propose such a mechanism. The approach we propose to ID is based on mining database traces stored in log files. The result of the mining process is used to form user profiles that can model normal behavior and identify intruders. An additional feature of our approach is that we couple our mechanism with role based access control (RBAC). Under a RBAC system permissions are associated with roles, usually grouping several users, rather than with single users. Our ID system is able to determine role intruders, that is, individuals that while holding a specific role, have a behavior different from the normal behavior of the role. An important advantage of providing an ID mechanism specifically tailored to databases is that it can also be used to protect against insider threats. Furthermore, the use of roles makes our approach usable even for databases with large user population. Our preliminary experimental evaluation on both real and synthetic database traces show that our methods work well in practical situations


international conference on management of data | 2006

Context-sensitive ranking

Rakesh Agrawal; Ralf Rantzau; Evimaria Terzi

Contextual preferences take the form that item i1 is preferred to item i2 in the context of X. For example, a preference might state the choice for Nicole Kidman over Penelope Cruz in drama movies, whereas another preference might choose Penelope Cruz over Nicole Kidman in the context of Spanish dramas. Various sources provide preferences independently and thus preferences may contain cycles and contradictions. We reconcile democratically the preferences accumulated from various sources and use them to create a priori orderings of tuples in an off-line preprocessing step. Only a few representative orders are saved, each corre-sponding to a set of contexts. These orders and associated contexts are used at query time to expeditiously provide ranked answers. We formally define contextual preferences, provide algorithms for creating orders and processing queries, and present experimental results that show their efficacy and practical utility.


very large data bases | 2004

Relational link-based ranking

Floris Geerts; Heikki Mannila; Evimaria Terzi

Link analysis methods show that the interconnections between web pages have lots of valuable information. The link analysis methods are, however, inherently oriented towards analyzing binary relations. We consider the question of generalizing link analysis methods for analyzing relational databases. To this aim, we provide a generalized ranking framework and address its practical implications. More specically, we associate with each relational database and set of queries a unique weighted directed graph, which we call the database graph. We explore the properties of database graphs. In analogy to link analysis algorithms, which use the Web graph to rank web pages, we use the database graph to rank partial tuples. In this way we can, e.g., extend the PageRank link analysis algorithm to relational databases and give this extension a random querier interpretation. Similarly, we extend the HITS link analysis algorithm to relational databases. We conclude with some preliminary experimental results.


international conference on data mining | 2009

A Framework for Computing the Privacy Scores of Users in Online Social Networks

Kun Liu; Evimaria Terzi

A large body of work has been devoted to address corporate-scale privacy concerns related to social networks. The main focus was on how to share social networks owned by organizations without revealing the identities or sensitive relationships of the users involved. Not much attention has been given to the privacy risk of users posed by their information sharing activities. In this paper, we approach the privacy concerns arising in online social networks from the individual users’ viewpoint: we propose a framework to compute a privacy score of a user, which indicates the potential privacy risk caused by his participation in the network. Our definition of privacy score satisfies the following intuitive properties: the more sensitive the information revealed by a user, the higher his privacy risk. Also, the more visible the disclosed information becomes in the network, the higher the privacy risk. We develop mathematical models to estimate both sensitivity and visibility of the information. We apply our methods to synthetic and real-world data and demonstrate their efficacy and practical utility.


Molecular Oral Microbiology | 2012

Using high throughput sequencing to explore the biodiversity in oral bacterial communities

Patricia I. Diaz; Amanda K. Dupuy; Loreto Abusleme; B. Reese; C. Obergfell; Linda E. Choquette; Anna Dongari-Bagtzoglou; Douglas E. Peterson; Evimaria Terzi; Linda D. Strausbaugh

High throughput sequencing of 16S ribosomal RNA gene amplicons is a cost-effective method for characterization of oral bacterial communities. However, before undertaking large-scale studies, it is necessary to understand the technique-associated limitations and intrinsic variability of the oral ecosystem. In this work we evaluated bias in species representation using an in vitro-assembled mock community of oral bacteria. We then characterized the bacterial communities in saliva and buccal mucosa of five healthy subjects to investigate the power of high throughput sequencing in revealing their diversity and biogeography patterns. Mock community analysis showed primer and DNA isolation biases and an overestimation of diversity that was reduced after eliminating singleton operational taxonomic units (OTUs). Sequencing of salivary and mucosal communities found a total of 455 OTUs (0.3% dissimilarity) with only 78 of these present in all subjects. We demonstrate that this variability was partly the result of incomplete richness coverage even at great sequencing depths, and so comparing communities by their structure was more effective than comparisons based solely on membership. With respect to oral biogeography, we found inter-subject variability in community structure was lower than site differences between salivary and mucosal communities within subjects. These differences were evident at very low sequencing depths and were mostly caused by the abundance of Streptococcus mitis and Gemella haemolysans in mucosa. In summary, we present an experimental and data analysis framework that will facilitate design and interpretation of pyrosequencing-based studies. Despite challenges associated with this technique, we demonstrate its power for evaluation of oral diversity and biogeography patterns.


IEEE Transactions on Knowledge and Data Engineering | 2013

Clustering Large Probabilistic Graphs

George Kollios; Michalis Potamias; Evimaria Terzi

We study the problem of clustering probabilistic graphs. Similar to the problem of clustering standard graphs, probabilistic graph clustering has numerous applications, such as finding complexes in probabilistic protein-protein interaction (PPI) networks and discovering groups of users in affiliation networks. We extend the edit-distance-based definition of graph clustering to probabilistic graphs. We establish a connection between our objective function and correlation clustering to propose practical approximation algorithms for our problem. A benefit of our approach is that our objective function is parameter-free. Therefore, the number of clusters is part of the output. We also develop methods for testing the statistical significance of the output clustering and study the case of noisy clusterings. Using a real protein-protein interaction network and ground-truth data, we show that our methods discover the correct number of clusters and identify established protein relationships. Finally, we show the practicality of our techniques using a large social network of Yahoo! users consisting of one billion edges.


knowledge discovery and data mining | 2008

Constructing comprehensive summaries of large event sequences

Jerry Kiernan; Evimaria Terzi

Event sequences capture system and user activity over time. Prior research on sequence mining has mostly focused on discovering local patterns. Though interesting, these patterns reveal local associations and fail to give a comprehensive summary of the entire event sequence. Moreover, the number of patterns discovered can be large. In this paper, we take an alternative approach and build short summaries that describe the entire sequence, while revealing local associations among events. We formally define the summarization problem as an optimization problem that balances between shortness of the summary and accuracy of the data description. We show that this problem can be solved optimally in polynomial time by using a combination of two dynamic-programming algorithms. We also explore more efficient greedy alternatives and demonstrate that they work well on large datasets. Experiments on both synthetic and real datasets illustrate that our algorithms are efficient and produce high-quality results, and reveal interesting local structures in the data.

Collaboration


Dive into the Evimaria Terzi's collaboration.

Top Co-Authors

Avatar

Theodoros Lappas

Stevens Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Athena Vakali

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge