Ewa A. Mirecka
University of Düsseldorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ewa A. Mirecka.
Angewandte Chemie | 2014
Ewa A. Mirecka; Hamed Shaykhalishahi; Aziz Gauhar; Şerife Akgül; Justin Lecher; Dieter Willbold; Matthias Stoldt; Wolfgang Hoyer
The misfolding and aggregation of the protein α-synuclein (α-syn), which results in the formation of amyloid fibrils, is involved in the pathogenesis of Parkinsons disease and other synucleinopathies. The emergence of amyloid toxicity is associated with the formation of partially folded aggregation intermediates. Here, we engineered a class of binding proteins termed β-wrapins (β-wrap proteins) with affinity for α-synuclein (α-syn). The NMR structure of an α-syn:β-wrapin complex reveals a β-hairpin of α-syn comprising the sequence region α-syn(37-54). The β-wrapin inhibits α-syn aggregation and toxicity at substoichiometric concentrations, demonstrating that it interferes with the nucleation of aggregation.
Scientific Reports | 2015
Oleksandr Brener; Tina Dunkelmann; Lothar Gremer; Thomas van Groen; Ewa A. Mirecka; Inga Kadish; Antje Willuweit; Janine Kutzsche; Dagmar Jürgens; Stephan Rudolph; Markus Tusche; Patrick Bongen; Jörg Pietruszka; Filipp Oesterhelt; Karl-Josef Langen; Hans-Ulrich Demuth; Arnold Janssen; Wolfgang Hoyer; Susanne Aileen Funke; Luitgard Nagel-Steger; Dieter Willbold
Strong evidence exists for a central role of amyloid β-protein (Aβ) oligomers in the pathogenesis of Alzheimer’s disease. We have developed a fast, reliable and robust in vitro assay, termed QIAD, to quantify the effect of any compound on the Aβ aggregate size distribution. Applying QIAD, we studied the effect of homotaurine, scyllo-inositol, EGCG, the benzofuran derivative KMS88009, ZAβ3W, the D-enantiomeric peptide D3 and its tandem version D3D3 on Aβ aggregation. The predictive power of the assay for in vivo efficacy is demonstrated by comparing the oligomer elimination efficiency of D3 and D3D3 with their treatment effects in animal models of Alzheimer´s disease.
Scientific Reports | 2016
Ewa A. Mirecka; Sophie Feuerstein; Lothar Gremer; Gunnar F. Schröder; Matthias Stoldt; Dieter Willbold; Wolfgang Hoyer
In type 2 diabetes, the formation of islet amyloid consisting of islet amyloid polypeptide (IAPP) is associated with reduction in β-cell mass and contributes to the failure of islet cell transplantation. Rational design of inhibitors of IAPP amyloid formation has therapeutic potential, but is hampered by the lack of structural information on inhibitor complexes of the conformationally flexible, aggregation-prone IAPP. Here we characterize a β-hairpin conformation of IAPP in complex with the engineered binding protein β-wrapin HI18. The β-strands correspond to two amyloidogenic motifs, 12-LANFLVH-18 and 22-NFGAILS-28, which are connected by a turn established around Ser-20. Besides backbone hydrogen bonding, the IAPP:HI18 interaction surface is dominated by non-polar contacts involving hydrophobic side chains of the IAPP β-strands. Apart from monomers, HI18 binds oligomers and fibrils and inhibits IAPP aggregation and toxicity at low substoichiometric concentrations. The IAPP β-hairpin can serve as a molecular recognition motif enabling control of IAPP aggregation.
PLOS ONE | 2016
Franziska Weirich; Lothar Gremer; Ewa A. Mirecka; Stephanie Schiefer; Wolfgang Hoyer; Henrike Heise
Amyloid deposits formed from islet amyloid polypeptide (IAPP) are a hallmark of type 2 diabetes mellitus and are known to be cytotoxic to pancreatic β-cells. The molecular structure of the fibrillar form of IAPP is subject of intense research, and to date, different models exist. We present results of solid-state NMR experiments on fibrils of recombinantly expressed and uniformly 13C, 15N-labeled human IAPP in the non-amidated, free acid form. Complete sequential resonance assignments and resulting constraints on secondary structure are shown. A single set of chemical shifts is found for most residues, which is indicative of a high degree of homogeneity. The core region comprises three to four β-sheets. We find that the central 23-FGAILS-28 segment, which is of critical importance for amyloid formation, is part of the core region and forms a β-strand in our sample preparation. The eight N-terminal amino acid residues of IAPP, forming a ring-like structure due to a disulfide bridge between residues C2 and C7, appear to be well defined but with an increased degree of flexibility. This study supports the elucidation of the structural basis of IAPP amyloid formation and highlights the extent of amyloid fibril polymorphism.
Journal of Biotechnology | 2014
Ewa A. Mirecka; Lothar Gremer; Stephanie Schiefer; Filipp Oesterhelt; Matthias Stoldt; Dieter Willbold; Wolfgang Hoyer
Human islet amyloid polypeptide (IAPP) is the major component of pancreatic amyloid deposits in type 2 diabetes. The structural conversion of IAPP from a monomeric state into amyloid assemblies is the subject of intense research. Recombinant production of IAPP is, however, difficult due to its extreme aggregation propensity. Here we describe a novel strategy for expression of IAPP in Escherichia coli, based on an engineered protein tag, which sequesters IAPP monomers and prevents IAPP aggregation. The IAPP-binding protein HI18 was selected by phage display from a β-wrapin library. Fusion of HI18 to IAPP enabled the soluble expression of the construct. IAPP was cleaved from the fusion construct and purified to homogeneity with a yield of 3mg of isotopically labeled peptide per liter of culture. In the monomeric state, IAPP was largely disordered as evidenced by far-UV CD and liquid-state NMR spectroscopy but competent to form amyloid fibrils according to atomic force microscopy. These results demonstrate the ability of the engineered β-wrapin HI18 for shielding the hydrophobic sequence of IAPP during expression and purification. Fusion of aggregation-inhibiting β-wrapins is a suitable approach for the recombinant production of aggregation-prone proteins.
Journal of Biological Chemistry | 2014
Clara S. R. Grüning; Ewa A. Mirecka; Antonia Nicole Klein; Eckhard Mandelkow; Dieter Willbold; Stephen F. Marino; Matthias Stoldt; Wolfgang Hoyer
Background: Aggregates of the protein Tau are associated with Alzheimer disease and other neurodegenerative diseases. Results: The engineered binding protein TP4, targeting the Tau repeat domain, was obtained from a novel β-wrapin protein library. Conclusion: TP4 interacts with two alternative conformations of Tau, thereby inhibiting Tau aggregation. Significance: Binding of aggregation-prone sequence stretches is an approach to interfere with Tau aggregation. The aggregation of Tau into paired helical filaments is involved in the pathogenesis of several neurodegenerative diseases, including Alzheimer disease. The aggregation reaction is characterized by conformational conversion of the repeat domain, which partially adopts a cross-β-structure in the resulting amyloid-like fibrils. Here, we report the selection and characterization of an engineered binding protein, β-wrapin TP4, targeting the Tau repeat domain. TP4 was obtained by phage display using the four-repeat Tau construct K18ΔK280 as a target. TP4 binds K18ΔK280 as well as the longest isoform of human Tau, hTau40, with nanomolar affinity. NMR spectroscopy identified two alternative TP4-binding sites in the four-repeat domain, with each including two hexapeptide motifs with high β-sheet propensity. Both binding sites contain the aggregation-determining PHF6 hexapeptide within repeat 3. In addition, one binding site includes the PHF6* hexapeptide within repeat 2, whereas the other includes the corresponding hexapeptide Tau(337–342) within repeat 4, denoted PHF6**. Comparison of TP4-binding with Tau aggregation reveals that the same regions of Tau are involved in both processes. TP4 inhibits Tau aggregation at substoichiometric concentration, demonstrating that it interferes with aggregation nucleation. This study provides residue-level insight into the interaction of Tau with an aggregation inhibitor and highlights the structural flexibility of Tau.
ChemBioChem | 2015
Hamed Shaykhalishahi; Ewa A. Mirecka; Aziz Gauhar; Clara S. R. Grüning; Dieter Willbold; Torleif Härd; Matthias Stoldt; Wolfgang Hoyer
Amyloidogenic proteins share a propensity to convert to the β‐structure‐rich amyloid state that is associated with the progression of several protein‐misfolding disorders. Here we show that a single engineered β‐hairpin‐binding protein, the β‐wrapin AS10, binds monomers of three different amyloidogenic proteins, that is, amyloid‐β peptide, α‐synuclein, and islet amyloid polypeptide, with sub‐micromolar affinity. AS10 binding inhibits the aggregation and toxicity of all three proteins. The results demonstrate common conformational preferences and related binding sites in a subset of the amyloidogenic proteins. These commonalities enable the generation of multispecific monomer‐binding agents.
Protein Engineering Design & Selection | 2014
Aziz Gauhar; Hamed Shaykhalishahi; Lothar Gremer; Ewa A. Mirecka; Wolfgang Hoyer
Aggregation of the protein α-synuclein (α-syn) has been implicated in Parkinsons disease and other neurodegenerative disorders, collectively referred to as synucleinopathies. The β-wrapin AS69 is a small engineered binding protein to α-syn that stabilizes a β-hairpin conformation of monomeric α-syn and inhibits α-syn aggregation at substoichiometric concentrations. AS69 is a homodimer whose subunits are linked via a disulfide bridge between their single cysteine residues, Cys-28. Here we show that expression of a functional dimer as a single polypeptide chain is achievable by head-to-tail linkage of AS69 subunits. Choice of a suitable linker is essential for construction of head-to-tail dimers that exhibit undiminished α-syn affinity compared with the solely disulfide-linked dimer. We characterize AS69-GS3, a head-to-tail dimer with a glycine-serine-rich linker, under oxidized and reduced conditions in order to evaluate the impact of the Cys28-disulfide bond on structure, stability and α-syn binding. Formation of the disulfide bond causes compaction of AS69-GS3, increases its thermostability, and is a prerequisite for high-affinity binding to α-syn. Comparison of AS69-GS3 and AS69 demonstrates that head-to-tail linkage promotes α-syn binding by affording accelerated disulfide bond formation.
Computers & Chemical Engineering | 2018
Asuka A. Orr; Hamed Shaykhalishahi; Ewa A. Mirecka; Sai Vamshi R. Jonnalagadda; Wolfgang Hoyer; Phanourios Tamamis
β-wrapins are engineered binding proteins stabilizing the β-hairpin conformations of amyloidogenic proteins islet amyloid polypeptide (IAPP), amyloid-β, and α-synuclein, thus inhibiting their amyloid propensity. Here, we use computational and experimental methods to investigate the molecular recognition of IAPP by β-wrapins. We show that the multi-targeted, IAPP, amyloid-β, and α-synuclein, binding properties of β-wrapins originate mainly from optimized interactions between β-wrapin residues and sets of residues in the three amyloidogenic proteins with similar physicochemical properties. Our results suggest that IAPP is a comparatively promiscuous β-wrapin target, probably due to the low number of charged residues in the IAPP β-hairpin motif. The sub-micromolar affinity of β-wrapin HI18, specifically selected against IAPP, is achieved in part by salt-bridge formation between HI18 residue Glu10 and the IAPP N-terminal residue Lys1, both located in the flexible N-termini of the interacting proteins. Our findings provide insights towards developing novel protein-based single- or multi-targeted therapeutics.
Angewandte Chemie | 2014
Ewa A. Mirecka; Hamed Shaykhalishahi; Aziz Gauhar; Şerife Akgül; Justin Lecher; Dieter Willbold; Matthias Stoldt; Wolfgang Hoyer