Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ewa Golanska is active.

Publication


Featured researches published by Ewa Golanska.


BMC Cancer | 2009

Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors

Piotr Rieske; Ewa Golanska; Magdalena Zakrzewska; Sylwester Piaskowski; Krystyna Hulas-Bigoszewska; M Wolanczyk; Malgorzata Szybka; Monika Witusik-Perkowska; Krzysztof Zakrzewski; Wojciech Biernat; Barbara Krynska; Pawel P. Liberski

BackgroundAlthough features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed.MethodsFollowing methods were used to compare glioblastoma cells and GFAP+NNP (NHA): exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells EGFR amplification analysis, LOH/MSI analysis, and P53 nucleotide sequence analysis were performed.ResultsIn vitro differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP). Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+) and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8), as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum.ConclusionOur results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present in vitro multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP.


Neuroscience Letters | 2005

CYP46 : A risk factor for Alzheimer's disease or a coincidence?

Ewa Golanska; Krystyna Hulas-Bigoszewska; Izabela Wojcik; Piotr Rieske; Maria Styczyńska; Beata Peplonska; Anna Pfeffer; Elzbieta Luczywek; B. Wasiak; Tomasz Gabryelewicz; Dorota Religa; Malgorzata Chodakowska-Zebrowska; Maria Barcikowska; Tomasz Sobow; Pawel P. Liberski

Excess cholesterol is removed from the brain via hydroxylation mediated by cholesterol 24S-hydroxylase (CYP46). Although serum and cerebrospinal fluid (CSF) concentrations of 24S-hydroxycholesterol are altered during the progress of Alzheimers disease, studies carried out to date in different populations on the association of CYP46 gene polymorphisms and risk of AD have been inconclusive. In this report, we analyzed CYP46 polymorphisms in 215 Polish AD cases and 173 healthy individuals. A fragment of CYP46 intron 2 was amplified by PCR reaction and sequenced. We discovered a new single nucleotide substitution in CYP46 intron 2, but found no difference in particular genotype or allele frequencies between AD patients and controls. However, the GG genotype of the known rs754203 polymorphic site might be a risk factor for AD, especially in APOE varepsilon4 carriers. Interestingly, in AD patients the rs754203 G allele was more frequent in males than in females. However, considering the extreme divergence of results obtained by different authors, a clear connection between the CYP46 gene and AD is questionable.


Neuroscience Letters | 2006

Regulation of PrPC expression: nerve growth factor (NGF) activates the prion gene promoter through the MEK1 pathway in PC12 cells.

Izabela Zawlik; Monika Witusik; Krystyna Hulas-Bigoszewska; Sylwester Piaskowski; Malgorzata Szybka; Ewa Golanska; Pawel P. Liberski; Piotr Rieske

A high expression of PrP(C) in cells is one factor that increases the risk of conversion to the misfolded, disease-associated form (PrP(Sc)) characteristic of transmissible spongiform encephalopathies. Thus, developing a method to control the level of PrP(C) expression in cells could be one way to delay or prevent the onset of clinical signs of these diseases. In this study the mechanisms controlling the expression of the Prnp gene in PC12 cells and in rat brain were examined. We observed a slight activation of a cloned fragment of the human PRNP gene promoter using the luciferase reporter system in PC12 cells stimulated with nerve growth factor (NGF). The activating effect of NGF was enhanced by mitogen-activated protein kinase (MEK1) and suppressed by myristylated serine/threonine kinase (myrAKT). These results suggest that MEK1 is a positive activator of the PRNP promoter that inhibits the AKT pathway. Independent experiments suggested that high expression of PrP(C) in the brain depends on the rate of translation and/or the efficiency of PrP(C) stabilization. We also investigated the epigenic status of the Prnp promoter. We observed no increase of PrP(C) or Prnp mRNA levels in PC12 cells after treatment with the DNA-demethylating agent. The Prnp promoter did not display methylation either in NGF-treated and untreated PC12 cells, or in the rat brain. These results improve the understanding of the regulation of the Prnp gene promoter, a DNA regulatory element controlling the expression of PrP(C), a protein involved in several neurological diseases.


Journal of Alzheimer's Disease | 2009

Earlier Onset of Alzheimer's Disease: Risk Polymorphisms Within PRNP, PRND, CYP46, and APOE Genes

Ewa Golanska; Krystyna Hulas-Bigoszewska; Monika Sieruta; Izabela Zawlik; Monika Witusik; Sylwia M. Gresner; Tomasz Sobow; Maria Styczyńska; Beata Peplonska; Maria Barcikowska; Pawel P. Liberski; Elizabeth H. Corder

We studied eight polymorphisms within APOE, PRNP, PRND, and CYP46 genes in 213 Polish late-onset patients with Alzheimers disease (AD) and 171 non-demented elderly controls. A latent classification approach, grade-of-membership analysis, was taken to identify three extreme pure type risk sets defined by the probabilities of being affected with AD and for genotypes found at the examined genes. Sets I and II represented high intrinsic risk, having a higher density of various genotypes compared to set III, at low intrinsic risk. A gradient of onset age depending on membership in the risk sets was also observed. Logistic regression analysis showed that the highest risk for AD was found for individuals who co-inherited APOE epsilon4 allele, PRNP codon 129 homozygosity, PRND codon 174 Thr allele, and CYP46 rs754203 g allele. AD can be influenced by genetic profiles leading to appearance of the disease, composed of genes which separately evoke a little or unnoticeable effect. Moreover, there may be multiple sufficient risk sets for AD. Looking at multiple genes together rather than analyzing them individually, may improve identification of risk alleles.


Neuroscience Letters | 2007

Regulatory sequences of the PRNP gene influence susceptibility to sporadic Creutzfeldt–Jakob disease

Jolanta Bratosiewicz-Wasik; Pawel P. Liberski; Ewa Golanska; Gerhard H. Jansen; Tomasz J. Wasik

The prion diseases are fatal neurodegenerative disorders that afflict both humans and animals. They comprise kuru, Creutzfeldt-Jakob disease (CJD), Gerstmman-Straussler-Scheinker syndrome (GSS), and fatal familial insomnia (FFI). Both GSS, FFI and approximately 10% of CJD cases are genetically linked disorders, whereas 90% of CJD cases are not associated with mutations in the PRNP coding region, therefore other factors must be involved in pathogenesis of these forms of CJD. There is strong evidence that in transgenic mice the level of PrP gene expression influences the initiation and progression of the prion diseases. Moreover, in in vitro experiments demonstrated that mutations in the regulatory region of PRNP gene altered gene expression, therefore it may be expected that PrP expression level influences the susceptibility to CJD. In order to investigate whether single nucleotide polymorphisms within regulatory region of PRNP may modulate genetic susceptibility to sporadic CJD we examined an association of the C/G polymorphism at position -101 with the sCJD. In our study -101G polymorphism is over-represented among sCJD PRNP codon 129M/V cases compared with the control group. Our data suggest that polymorphism at position -101 in the regulatory region of PRNP may be a risk factor for sCJD among codon 129 heterozygotes.


Alzheimers & Dementia | 2017

Evaluation of α-synuclein as a novel cerebrospinal fluid biomarker in different forms of prion diseases

Franc Llorens; Niels Kruse; Matthias Schmitz; Nadine Gotzmann; Ewa Golanska; Katrin Thüne; Orgeta Zejneli; Eirini Kanata; Tobias Knipper; Maria Cramm; Peter Lange; Saima Zafar; Beata Sikorska; Pawel P. Liberski; Eva Mitrova; Daniela Varges; Christian Schmidt; Theodoros Sklaviadis; Brit Mollenhauer; Inga Zerr

Accurate diagnosis of prion diseases and discrimination from alternative dementias gain importance in the clinical routine, but partial overlap in cerebrospinal fluid (CSF) biomarkers impedes absolute discrimination in the differential diagnostic context.


Analytical Biochemistry | 2011

Selection of reference genes for gene expression studies in astrocytomas

Sylwia M. Gresner; Ewa Golanska; Dominika Kulczycka-Wojdala; Wielisław Papierz; Pawel P. Liberski

This study was aimed to test a panel of six housekeeping genes (GAPDH, HPRT1, POLR2A, RPLP0, ACTB, and H3F) so as to identify and validate the most suitable reference genes for expression studies in astrocytomas. GAPDH was the most stable and HPRT1 was the least stable reference gene. The effect of reference gene selection on quantitative real-time polymerase chain reaction data interpretation was demonstrated, normalizing the expression data of a selected gene of interest. Thus, GAPDH may be recommended for data normalization in gene expression studies in astrocytomas. Nevertheless, a preliminary validation of reference gene stability is required prior to every study.


British Journal of Cancer | 2008

Elimination of wild-type P53 mRNA in glioblastomas showing heterozygous mutations of P53

Malgorzata Szybka; Izabela Zawlik; Kulczycka D; Ewa Golanska; E Jesien; Kupnicka D; Robert Stawski; Sylwester Piaskowski; Ewa Bieniek; Magdalena Zakrzewska; Radzisław Kordek; Pawel P. Liberski; Piotr Rieske

We screened 50 glioblastomas for P53 mutations. Five glioblastomas showed heterozygous mutations, while three were putatively heterozygous. Six of these eight glioblastomas showed elimination of wild-type P53 mRNA. These results strongly suggest that some sort of mechanism(s) favouring mutated over wild-type P53 mRNA exists in glioblastoma cells with heterozygous mutations of this gene.


Alzheimers & Dementia | 2016

Mitochondrial DNA differentiates Alzheimer's disease from Creutzfeldt-Jakob disease

Petar Podlesniy; Franc Llorens; Ewa Golanska; Beata Sikorska; Pawel P. Liberski; Inga Zerr; Ramon Trullas

Low content of cell‐free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) is a biomarker of early stage Alzheimers disease (AD), but whether mtDNA is altered in a rapid neurodegenerative dementia such as Creutzfeldt‐Jakob disease is unknown.


Prion | 2012

PRND 3′UTR polymorphism may be associated with behavioral disturbances in Alzheimer disease

Marcin Flirski; Monika Sieruta; Ewa Golanska; Iwona Kloszewska; Pawel P. Liberski; Tomasz Sobow

The etiology of behavioral and psychological symptoms of dementia (BPSD) is complex, including putative biological, psychological, social and environmental factors. Recent years have witnessed accumulation of data on the association between genetic factors and behavioral abnormalities in Alzheimer disease (AD). In this research paper, our aim is to evaluate the association between the APOE, CYP46, PRNP and PRND genes and the profile of neuropsychiatric symptoms in Polish subjects with AD and mild cognitive impairment (MCI). We studied 99 patients with AD and 48 subjects with MCI. The presence and profile of BPSD were evaluated at baseline and prospectively with the Neuropsychiatric Inventory (NPI). Patients were dichotomized into those having ever experienced a particular symptom and those who did not over the whole disease period. Genotyping was performed using previously described standard protocols. The prevalence of comorbid behavioral symptoms and the overall level of behavioral burden were significantly greater in AD compared with the MCI group. In AD patients, carrier status of the T allele of the 3′UTR (untranslated region) PRND polymorphism was associated with an increased cumulative behavioral load and an elevated risk for delusions, anxiety, agitation/aggression, apathy and irritability/emotional ability. Among MCI subjects, APOE ε4 carriers demonstrated a reduced risk for nighttime behavior change. No other statistically significant genotype-phenotype correlations were observed, including the APOE, CYP46 and PRNP genes. A precise estimation of the exact significance of particular polymorphisms in BPSD etiology requires future studies on large populations.

Collaboration


Dive into the Ewa Golanska's collaboration.

Top Co-Authors

Avatar

Pawel P. Liberski

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Piotr Rieske

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Malgorzata Szybka

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Monika Sieruta

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Sylwester Piaskowski

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Sylwia M. Gresner

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Franc Llorens

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Beata Sikorska

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Barcikowska

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge