Ewan Cameron
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ewan Cameron.
Nature | 2015
Samir Bhatt; Daniel J. Weiss; Ewan Cameron; Donal Bisanzio; Bonnie Mappin; Ursula Dalrymple; Katherine E. Battle; Catherine L. Moyes; Andrew J Henry; Philip A. Eckhoff; Edward A. Wenger; Olivier J. T. Briët; Melissa A. Penny; Thomas Smith; Adam Bennett; Joshua Yukich; Thomas P. Eisele; Jamie T. Griffin; Cristin A Fergus; Matt Lynch; Finn Lindgren; Justin M. Cohen; C L J Murray; David L. Smith; Simon I. Hay; Richard Cibulskis; Peter W. Gething
Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning. However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing intervention coverage to directly evaluate trends from 2000 to 2015, and quantify the attributable effect of malaria disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542–753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015 control strategies.
Monthly Notices of the Royal Astronomical Society | 2011
Simon P. Driver; D. T. Hill; Lee S. Kelvin; Aaron S. G. Robotham; J. Liske; Peder Norberg; Ivan K. Baldry; Steven P. Bamford; Andrew M. Hopkins; J. Loveday; J. A. Peacock; E. Andrae; Joss Bland-Hawthorn; S. Brough; Michael J. I. Brown; Ewan Cameron; J. H. Y. Ching; Matthew Colless; Christopher J. Conselice; Scott M. Croom; N. J. G. Cross; R. De Propris; S. Dye; Michael J. Drinkwater; S. Ellis; Alister W. Graham; M. W. Grootes; M. L. P. Gunawardhana; D. H. Jones; E. van Kampen
The Galaxy and Mass Assembly (GAMA) survey has been operating since 2008 February on the 3.9-m Anglo-Australian Telescope using the AAOmega fibre-fed spectrograph facility to acquire spectra with a resolution of R ≈ 1300 for 120 862 Sloan Digital Sky Survey selected galaxies. The target catalogue constitutes three contiguous equatorial regions centred at 9h (G09), 12h (G12) and 14.5h (G15) each of 12 × 4 deg2 to limiting fluxes of rpet < 19.4, rpet < 19.8 and rpet <19.4 mag, respectively (and additional limits at other wavelengths). Spectra and reliable redshifts have been acquired for over 98 per cent of the galaxies within these limits. Here we present the survey footprint, progression, data reduction, redshifting, re-redshifting, an assessment of data quality after 3 yr, additional image analysis products (including ugrizYJHK photometry, S´ersic profiles and photometric redshifts), observing mask and construction of our core survey catalogue (GamaCore). From this we create three science-ready catalogues: GamaCoreDR1 for public release, which includes data acquired during year 1 of operations within specified magnitude limits (2008 February to April); GamaCoreMainSurvey containing all data above our survey limits for use by the GAMA Team and collaborators; and GamaCore-AtlasSV containing year 1, 2 and 3 data matched to Herschel-ATLAS science demonstration data. These catalogues along with the associated spectra, stamps and profiles can be accessed via the GAMA website: http://www.gama-survey.org/
Monthly Notices of the Royal Astronomical Society | 2011
Edward N. Taylor; Andrew M. Hopkins; Ivan K. Baldry; Michael J. I. Brown; Simon P. Driver; Lee S. Kelvin; D. T. Hill; Aaron S. G. Robotham; Joss Bland-Hawthorn; D. H. Jones; Rob Sharp; Daniel Thomas; J. Liske; Jon Loveday; Peder Norberg; J. A. Peacock; Steven P. Bamford; Sarah Brough; Matthew Colless; Ewan Cameron; Chistopher J Conselice; Scott M. Croom; Carlos S. Frenk; M. L. P. Gunawardhana; Konrad Kuijken; Robert C. Nichol; H. R. Parkinson; S. Phillipps; Kevin A. Pimbblet; Cristina Popescu
This paper describes the first catalogue of photometrically derived stellar mass estimates for intermediate-redshift (z < 0.65; median z= 0.2) galaxies in the Galaxy And Mass Assembly (GAMA) spectroscopic redshift survey. These masses, as well as the full set of ancillary stellar population parameters, will be made public as part of GAMA data release 2. Although the GAMA database does include near-infrared (NIR) photometry, we show that the quality of our stellar population synthesis fits is significantly poorer when these NIR data are included. Further, for a large fraction of galaxies, the stellar population parameters inferred from the optical-plus-NIR photometry are formally inconsistent with those inferred from the optical data alone. This may indicate problems in our stellar population library, or NIR data issues, or both; these issues will be addressed for future versions of the catalogue. For now, we have chosen to base our stellar mass estimates on optical photometry only. In light of our decision to ignore the available NIR data, we examine how well stellar mass can be constrained based on optical data alone. We use generic properties of stellar population synthesis models to demonstrate that restframe colour alone is in principle a very good estimator of stellar mass-to-light ratio, M*/Li. Further, we use the observed relation between restframe (g−i) and M*/Li for real GAMA galaxies to argue that, modulo uncertainties in the stellar evolution models themselves, (g−i) colour can in practice be used to estimate M*/Li to an accuracy of ≲0.1 dex (1σ). This ‘empirically calibrated’ (g−i)–M*/Li relation offers a simple and transparent means for estimating galaxies’ stellar masses based on minimal data, and so provides a solid basis for other surveys to compare their results to z≲0.4 measurements from GAMA.
Publications of the Astronomical Society of Australia | 2011
Ewan Cameron
I present a critical review of techniques for estimating confidence intervals on binomial population proportions inferred from success counts in small to intermediate samples. Population proportions arise frequently as quantities of interest in astronomical research; for instance, in studies aiming to constrain the bar fraction, active galactic nucleus fraction, supermassive black hole fraction, merger fraction, or red sequence fraction from counts of galaxies exhibiting distinct morphological features or stellar populations. However, two of the most widely-used techniques for estimating binomial confidence intervals — the ‘normal approximation’ and the Clopper & Pearson approach — are liable to misrepresent the degree of statistical uncertainty present under sampling conditions routinely encountered in astronomical surveys, leading to an ineffective use of the experimental data (and, worse, an inefficient use of the resources expended in obtaining that data). Hence, I provide here an overview of the fundamentals of binomial statistics with two principal aims: (i) to reveal the ease with which (Bayesian) binomial confidence intervals with more satisfactory behaviour may be estimated from the quantiles of the beta distribution using modern mathematical software packages (e.g. r, matlab, mathematica, idl, python); and (ii) to demonstrate convincingly the major flaws of both the ‘normal approximation’ and the Clopper & Pearson approach for error estimation.
Monthly Notices of the Royal Astronomical Society | 2010
Ivan K. Baldry; Aaron S. G. Robotham; D. T. Hill; Simon P. Driver; J. Liske; Peder Norberg; Steven P. Bamford; Andrew M. Hopkins; Jon Loveday; J. A. Peacock; Ewan Cameron; Scott M. Croom; N. J. G. Cross; I. F. Doyle; S. Dye; Carlos S. Frenk; D. H. Jones; E. van Kampen; Lee S. Kelvin; Robert C. Nichol; H. R. Parkinson; Cristina Popescu; M. Prescott; Rob Sharp; W. Sutherland; Daniel Thomas; Richard J. Tuffs
We describe the spectroscopic target selection for the Galaxy And Mass Assembly (GAMA) survey. The input catalogue is drawn from the Sloan Digital Sky Survey (SDSS) and UKIRT Infrared Deep Sky Survey (UKIDSS). The initial aim is to measure redshifts for galaxies in three 4 ◦ × 12 ◦ regions at 9, 12 and 14.5 h, on the celestial equator, with magnitude selections r< 19.4, z< 18.2 and K AB < 17.6 over all three regions, and r< 19.8 in the 12-h region. The target density is 1080 deg −2 in the 12-h region and 720 deg −2 in the other regions. The average GAMA target density and area are compared with completed and ongoing galaxy redshift surveys. The GAMA survey implements a highly complete star–galaxy separation that jointly uses an intensity-profile separator (� sg = r psf − r model as per the SDSS) and a
Monthly Notices of the Royal Astronomical Society | 2011
Aaron S. G. Robotham; Peder Norberg; Simon P. Driver; Ivan K. Baldry; Steven P. Bamford; Andrew M. Hopkins; J. Liske; J. Loveday; Alex Merson; J. A. Peacock; Sarah Brough; Ewan Cameron; Christopher J. Conselice; Scott M. Croom; Carlos S. Frenk; M. L. P. Gunawardhana; D. T. Hill; D. H. Jones; Lee S. Kelvin; K. Kuijken; Robert C. Nichol; H. R. Parkinson; Kevin A. Pimbblet; S. Phillipps; Cristina Popescu; M. Prescott; Rob Sharp; W. Sutherland; Edward N. Taylor; Daniel Thomas
Using the complete Galaxy and Mass Assembly I (GAMA-I) survey covering ∼142 deg2 to rAB= 19.4, of which ∼47 deg2 is to rAB= 19.8, we create the GAMA-I galaxy group catalogue (G3Cv1), generated using a friends-of-friends (FoF) based grouping algorithm. Our algorithm has been tested extensively on one family of mock GAMA lightcones, constructed from Λ cold dark matter N-body simulations populated with semi-analytic galaxies. Recovered group properties are robust to the effects of interlopers and are median unbiased in the most important respects. G3Cv1 contains 14 388 galaxy groups (with multiplicity ≥2), including 44 186 galaxies out of a possible 110 192 galaxies, implying ∼40 per cent of all galaxies are assigned to a group. The similarities of the mock group catalogues and G3Cv1 are multiple: global characteristics are in general well recovered. However, we do find a noticeable deficit in the number of high multiplicity groups in GAMA compared to the mocks. Additionally, despite exceptionally good local spatial completeness, G3Cv1 contains significantly fewer compact groups with five or more members, this effect becoming most evident for high multiplicity systems. These two differences are most likely due to limitations in the physics included of the current GAMA lightcone mock. Further studies using a variety of galaxy formation models are required to confirm their exact origin. The G3Cv1 catalogue will be made publicly available as and when the relevant GAMA redshifts are made available at http://www.gama-survey.org.
The Astrophysical Journal | 2013
C. M. Carollo; T. J. Bschorr; A. Renzini; S. J. Lilly; P. Capak; A. Cibinel; O. Ilbert; M. Onodera; N. Z. Scoville; Ewan Cameron; Bahram Mobasher; D. B. Sanders; Yoshiaki Taniguchi
We use the large COSMOS sample of galaxies to study in an internally self-consistent way the change in the number densities of quenched early-type galaxies (Q-ETGs) of a given size over the redshift interval 0.2 10^(11) M_☉, where we would expect merging to be more significant, we find a small decrease, by ~30%. In both mass bins, the increase of the median sizes of Q-ETGs with time is primarily caused by the addition to the size function of larger and more diffuse Q-ETGs. At all masses, compact Q-ETGs become systematically redder toward later epochs, with a (U − V) color difference which is consistent with a passive evolution of their stellar populations, indicating that they are a stable population that does not appreciably evolve in size. We find furthermore, at all epochs, that the larger Q-ETGs (at least in the lower mass bin) have average rest-frame colors that are systematically bluer than those of the more compact Q-ETGs, suggesting that the former are indeed younger than the latter. The idea that new, large, Q-ETGs are responsible for the observed growth in the median size of the population at a given mass is also supported by analysis of the sizes and number of the star-forming galaxies that are expected to be the progenitors of the new Q-ETGs over the same period. In the low mass bin, the new Q-ETGs appear to have ~30% smaller half-light radii than their star-forming progenitors. This is likely due to the fading of their disks after they cease star formation. Comparison with higher redshifts shows that the median size of newly quenched galaxies roughly scales, at constant mass, as (1 + z)^(−1). We conclude that the dominant cause of the size evolution seen in the Q-ETG population is that the average sizes and thus stellar densities of individual Q-ETGs roughly scale with the average density of the universe at the time when they were quenched, and that subsequent size changes in individual objects, through merging or other processes, are of secondary importance, especially at masses below 10^(11) M_☉.
Monthly Notices of the Royal Astronomical Society | 2011
M. L. P. Gunawardhana; Andrew M. Hopkins; Rob Sharp; S. Brough; Edward N. Taylor; Joss Bland-Hawthorn; Claudia Maraston; Richard J. Tuffs; Cristina Popescu; D. Wijesinghe; D. H. Jones; Scott M. Croom; Elaine M. Sadler; Stephen M. Wilkins; Simon P. Driver; J. Liske; Peder Norberg; Ivan K. Baldry; Steven P. Bamford; Jon Loveday; J. A. Peacock; Aaron S. G. Robotham; Daniel B. Zucker; Quentin A. Parker; Christopher J. Conselice; Ewan Cameron; Carlos S. Frenk; D. T. Hill; Lee S. Kelvin; K. Kuijken
The stellar initial mass function (IMF) describes the distribution in stellar masses produced from a burst of star formation. For more than 50 yr, the implicit assumption underpinning most areas of research involving the IMF has been that it is universal, regardless of time and environment. We measure the high-mass IMF slope for a sample of low-to-moderate redshift galaxies from the Galaxy and Mass Assembly survey. The large range in luminosities and galaxy masses of the sample permits the exploration of underlying IMF dependencies. A strong IMF–star formation rate dependency is discovered, which shows that highly star-forming galaxies form proportionally more massive stars (they have IMFs with flatter power-law slopes) than galaxies with low star formation rates. This has a significant impact on a wide variety of galaxy evolution studies, all of which rely on assumptions about the slope of the IMF. Our result is supported by, and provides an explanation for, the results of numerous recent explorations suggesting a variation of or evolution in the IMF.
Monthly Notices of the Royal Astronomical Society | 2010
D. T. Hill; Lee S. Kelvin; Simon P. Driver; Aaron S. G. Robotham; Ewan Cameron; N. J. G. Cross; E. Andrae; Ivan K. Baldry; Steven P. Bamford; Joss Bland-Hawthorn; Sarah Brough; Christopher J. Conselice; Simon Dye; Andrew M. Hopkins; J. Liske; Jon Loveday; Peder Norberg; J. A. Peacock; Scott M. Croom; Carlos S. Frenk; Alister W. Graham; D. Heath Jones; Konrad Kuijken; Barry F. Madore; Robert C. Nichol; H. R. Parkinson; Steven Phillipps; Kevin A. Pimbblet; Cristina Popescu; M. Prescott
In order to generate credible 0.1–2 μm spectral energy distributions, the Galaxy and Mass Assembly (GAMA) project requires many gigabytes of imaging data from a number of instruments to be reprocessed into a standard format. In this paper, we discuss the software infrastructure we use, and create self-consistent ugrizYJHK photometry for all sources within the GAMA sample. Using UKIDSS and SDSS archive data, we outline the pre-processing necessary to standardize all images to a common zero-point, the steps taken to correct for the seeing bias across the data set and the creation of gigapixel-scale mosaics of the three 4 × 12 deg2 GAMA regions in each filter. From these mosaics, we extract source catalogues for the GAMA regions using elliptical Kron and Petrosian matched apertures. We also calculate Sersic magnitudes for all galaxies within the GAMA sample using sigma, a galaxy component modelling wrapper for galfit 3. We compare the resultant photometry directly and also calculate the r-band galaxy luminosity function for all photometric data sets to highlight the uncertainty introduced by the photometric method. We find that (1) changing the object detection threshold has a minor effect on the best-fitting Schechter parameters of the overall population (M*± 0.055 mag, α± 0.014, ϕ*± 0.0005 h3 Mpc−3); (2) there is an offset between data sets that use Kron or Petrosian photometry, regardless of the filter; (3) the decision to use circular or elliptical apertures causes an offset in M* of 0.20 mag; (4) the best-fitting Schechter parameters from total-magnitude photometric systems (such as SDSS modelmag or Sersic magnitudes) have a steeper faint-end slope than photometric systems based upon Kron or Petrosian measurements; and (5) our Universe’s total luminosity density, when calculated using Kron or Petrosian r-band photometry, is underestimated by at least 15 per cent.
Monthly Notices of the Royal Astronomical Society | 2012
Jon Loveday; Peder Norberg; Ivan K. Baldry; Simon P. Driver; Andrew M. Hopkins; J. A. Peacock; Steven P. Bamford; J. Liske; Joss Bland-Hawthorn; Sarah Brough; Michael J. I. Brown; Ewan Cameron; Christopher J. Conselice; Scott M. Croom; Carlos S. Frenk; M. L. P. Gunawardhana; D. T. Hill; D. H. Jones; Lee S. Kelvin; K. Kuijken; Robert C. Nichol; H. R. Parkinson; S. Phillipps; Kevin A. Pimbblet; Cristina Popescu; M. Prescott; Aaron S. G. Robotham; Rob Sharp; W. Sutherland; Edward N. Taylor
Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.