Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ewelina Synowiec is active.

Publication


Featured researches published by Ewelina Synowiec.


Mutation Research | 2008

Association between DNA damage, DNA repair genes variability and clinical characteristics in breast cancer patients.

Ewelina Synowiec; Joanna Stefanska; Zbigniew Morawiec; Janusz Blasiak; Katarzyna Wozniak

The cells susceptibility to DNA damage and its ability to repair this damage are important for cancer induction, promotion and progression. In the present work we determined the level of basal (total endogenous) and endogenous oxidative DNA damage as well as polymorphism of the DNA repair genes: RAD51 (135 G/C), XRCC3 (Thr241Met), OGG1 (Ser326Cys) and XPD (Lys751Gln) in peripheral blood lymphocytes of 41 breast cancer patients and 48 healthy individuals. DNA damage was evaluated by alkaline comet assay with DNA repair enzymes: Endo III and Fpg, preferentially recognizing oxidized DNA bases. The genotypes of the polymorphisms were determined by restriction fragment length polymorphism PCR. We observed a strong association between breast cancer occurrence and the genotypes C/C of the RAD51-135G/C polymorphism, Ser/Ser of the OGG1-Ser326Cys and Lys/Gln of the XPD-Lys751Gln, whereas the genotypes G/C of the RAD51-135G/C and Lys/Lys of the XPD-Lys751Gln exerted a protective effect against breast cancer. We also found that individuals with the G/C genotype of the RAD51-135G/C polymorphism and with the Lys/Lys genotype of the XPD-Lys751Gln polymorphism displayed a lower extent of basal and oxidative DNA damage. A strong association between higher level of oxidative DNA damage and the Lys/Gln genotype of the latter polymorphism was found. We also correlated genotypes with clinical characteristics of breast cancer patients. We observed a strong association between the G/C genotype of the RAD51-135 G/C polymorphism and the expression of the progesterone receptor and between both alleles of the OGG1-Ser326Cys polymorphism and lymph node metastasis. Our results suggest that the polymorphism of the RAD51, OGG1 and XPD genes may be linked with breast cancer by the modulation of the cellular response to oxidative stress and these polymorphisms may be considered as markers in breast cancer along with the genetic or/and environmental indicators of oxidative stress.


Experimental and Molecular Pathology | 2009

Polymorphism of the homologous recombination repair genes RAD51 and XRCC3 in breast cancer.

Renata Krupa; Ewelina Synowiec; Elzbieta Pawlowska; Zbigniew Morawiec; Anna Sobczuk; Marek Zadrożny; Katarzyna Wozniak; Janusz Blasiak

The RAD51 protein and its paralog, XRCC3, play an important role in the repair of DNA double-strand breaks (DSBs) by homologous recombination. Since DSBs may contribute to the pathogenesis of breast cancer and variability in DNA repair genes may be linked with some cancers, we performed a case-control study (135 cases and 175 controls) to check the association between the genotypes of the Thr241Met polymorphism of the XRCC3 gene and the 135G>C polymorphism of the RAD51 gene and breast cancer occurrence and progression. Genotypes were determined in peripheral blood lymphocytes by RFLP-PCR. We did not find any association between either polymorphism singly and breast cancer occurrence. Both polymorphisms were not related to tumor size, estrogen and progesterone receptors status, cancer type and grade. However, the Thr241Met genotype of the XRCC3 polymorphism slightly increased the risk of local metastasis in breast cancer patients (OR 2.56, 95% CI 1.27-5.17). The combined Thr241Met/135G>C genotype decreased the risk of breast cancer occurrence (OR 0.22, 95% CI 0.08-0.59). Our results suggest that the variability of the DNA homologous recombination repair genes RAD51 and XRCC3 may play a role in breast cancer occurrence and progression, but this role may be underlined by a mutual interaction between these genes.


Mutation Research | 2009

DNA damage and repair in age-related macular degeneration

Jacek P. Szaflik; Katarzyna Janik-Papis; Ewelina Synowiec; Dominika Ksiazek; Magdalena Zaras; Katarzyna Wozniak; Jerzy Szaflik; Janusz Blasiak

Age-related macular degeneration (AMD) is a retinal degenerative disease that is the main cause of vision loss in individuals over the age of 55 in the Western world. Clinically relevant AMD results from damage to the retinal pigment epithelial (RPE) cells thought to be mainly caused by oxidative stress. The stress also affects the DNA of RPE cells, which promotes genome instability in these cells. These effects may coincide with the decrease in the efficacy of DNA repair with age. Therefore individuals with DNA repair impaired more than average for a given age may be more susceptible to AMD if oxidative stress affects their RPE cells. This may be helpful in AMD risk assessment. In the present work we determined the level of basal (measured in the alkaline comet assay) endogenous and endogenous oxidative DNA damage, the susceptibility to exogenous mutagens and the efficacy of DNA repair in lymphocytes of 100 AMD patients and 110 age-matched individuals without visual disturbances. The cells taken from AMD patients displayed a higher extent of basal endogenous DNA damage without differences between patients of dry and wet forms of the disease. DNA double-strand breaks did not contribute to the observed DNA damage as checked by the neutral comet assay and pulsed field gel electrophoresis. The extent of oxidative modification to DNA bases was greater in AMD patients than in the controls, as probed by DNA repair enzymes NTH1 and Fpg. Lymphocytes from AMD patients displayed a higher sensitivity to hydrogen peroxide and UV radiation and repaired lesions induced by these factors less effectively than the cells from the control individuals. We postulate that the impaired efficacy of DNA repair may combine with enhanced sensitivity of RPE cells to blue and UV lights, contributing to the pathogenesis of AMD.


Leukemia | 2013

BCR-ABL1 kinase inhibits uracil DNA glycosylase UNG2 to enhance oxidative DNA damage and stimulate genomic instability

Artur Slupianek; Rafal Falinski; Pawel Znojek; Tomasz Stoklosa; Sylwia Flis; Valentina Doneddu; Dariusz Pytel; Ewelina Synowiec; Janusz Blasiak; Alfonso Bellacosa; Tomasz Skorski

Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of chronic myeloid leukemia in chronic phase (CML-CP). Unfortunately, 25% of TKI-naive patients and 50–90% of patients developing TKI-resistance carry CML clones expressing TKI-resistant BCR-ABL1 kinase mutants. We reported that CML-CP leukemia stem and progenitor cell populations accumulate high amounts of reactive oxygen species, which may result in accumulation of uracil derivatives in genomic DNA. Unfaithful and/or inefficient repair of these lesions generates TKI-resistant point mutations in BCR-ABL1 kinase. Using an array of specific substrates and inhibitors/blocking antibodies we found that uracil DNA glycosylase UNG2 were inhibited in BCR-ABL1-transformed cell lines and CD34+ CML cells. The inhibitory effect was not accompanied by downregulation of nuclear expression and/or chromatin association of UNG2. The effect was BCR-ABL1 kinase-specific because several other fusion tyrosine kinases did not reduce UNG2 activity. Using UNG2-specific inhibitor UGI, we found that reduction of UNG2 activity increased the number of uracil derivatives in genomic DNA detected by modified comet assay and facilitated accumulation of ouabain-resistant point mutations in reporter gene Na+/K+ATPase. In conclusion, we postulate that BCR-ABL1 kinase-mediated inhibition of UNG2 contributes to accumulation of point mutations responsible for TKI resistance causing the disease relapse, and perhaps also other point mutations facilitating malignant progression of CML.


Experimental Eye Research | 2012

Association between polymorphisms of the DNA base excision repair genes MUTYH and hOGG1 and age-related macular degeneration.

Ewelina Synowiec; Janusz Blasiak; Malgorzata Zaras; Jerzy Szaflik; Jacek P. Szaflik

Age-Related Macular Degeneration (AMD) is an eye disease that results in progressive and irreversible loss of central vision and is considered as the primary cause of visual impairment, including blindness, in the elderly in industrialized countries. Oxidative stress has been implicated in the pathogenesis of AMD. The hOGG1 and the MUTYH genes play an important role in the repair of oxidatively damaged DNA in the base excision repair pathway. The DNA glycosylases encoded by the hOGG1 and MUTYH genes initiate this pathway by recognizing and removing 8-oxoguanine and adenine paired with 8-oxoguanine, respectively. Our study was designed to examine the association between the c.977C>G polymorphism (rs1052133) of the hOGG1 gene and the c.972G>C polymorphism (rs3219489) of the MUTYH gene and AMD as well as the modulation of this association by some clinical and lifestyle factors. Genotypes were determined in DNA from blood of 271 AMD patients, including 101 with wet and 170 with dry form of the disease and 105 sex- and age-matched individuals without AMD. We observed an association between AMD, dry and wet forms of AMD and the C/G genotype and the G allele of the c.977C>G-hOGG1 polymorphism (p 0.006; 0.009; 0.021 and 0.004; 0.005; 0.016 respectively). On the other hand, the C/C genotype and the C allele reduced the risk of AMD as well as of its dry form or wet form (p 0.002; 0.003; 0.010 and 0.004; 0.005; 0.016, respectively). Therefore, the associations we detected were driven by the dry AMD. We observed some statistically significant association between the occurrence of AMD and its dry and wet forms and genotypes of the other polymorphism, the c.972G>C-MUTYH polymorphism, but due to borderline character of all this association we do not consider them as medically relevant. Our findings suggest that the c.977C>G-hOGG1 polymorphism may be associated with dry AMD. Further studies are needed to determine possible association between AMD and the c.972G>C-MUTYH polymorphism.


Mutation Research | 2010

Efficacy of DNA double-strand breaks repair in breast cancer is decreased in carriers of the variant allele of the UBC9 gene c.73G>A polymorphism

Ewelina Synowiec; Renata Krupa; Zbigniew Morawiec; Maja Wasylecka; Lukasz Dziki; Jan Morawiec; Janusz Blasiak; Katarzyna Wozniak

UBC9 (E2) SUMO conjugating enzyme plays an important role in the maintenance of genome stability and integrity. In the present work we examined the association between the c.73G>A (Val25Met) polymorphism of the UBC9 gene (rs11553473) and efficacy of DNA double-strand breaks (DSBs) repair (DRE) in breast cancer patients. We determined the level of endogenous (basal) and exogenous (induced by γ-irradiation) DSBs and efficacy of their repair in peripheral blood lymphocytes of 57 breast cancer patients and 70 healthy individuals. DNA damage and repair were studied by neutral comet assay. Genotypes were determined in DNA from peripheral blood lymphocytes by allele-specific PCR (ASO-PCR). We also correlated genotypes with the clinical characteristics of breast cancer patients. We observed a strong association between breast cancer occurrence and the variant allele carried genotypes in patients with elevated level of basal as well as induced DNA damage (OR 6.74, 95% CI 2.27-20.0 and OR 5.33, 95% CI 1.81-15.7, respectively). We also found statistically significant (p<0.05) difference in DRE related to the c.73G>A polymorphism of the UBC9 gene in breast cancer patients. Carriers of variant allele have decreased DNA DRE as compared to wild type genotype carriers. We did not find any association with the UBC9 gene polymorphism and estrogen and progesterone receptor status. The variant allele of the UBC9 gene polymorphism was strongly inversely related to HER negative breast cancer patients (OR 0.03, 95% CI 0.00-0.23). Our results suggest that the c.73G>A polymorphism of the UBC9 gene may affect DNA DSBs repair efficacy in breast cancer patients.


Molecular Biology Reports | 2012

Genetic polymorphism of the iron-regulatory protein-1 and -2 genes in age-related macular degeneration

Ewelina Synowiec; Magdalena Pogorzelska; Janusz Blasiak; Jerzy Szaflik; Jacek P. Szaflik

Iron can be involved in the pathogenesis of AMD through the oxidative stress because it may catalyze the Haber–Weiss and Fenton reactions converting hydrogen peroxide to free radicals, which can induce cellular damage. We hypothesized that genetic polymorphism in genes related to iron metabolism may predispose individuals to the development of AMD and therefore we checked for an association between the g.32373708 G>A polymorphism (rs867469) of the IRP1 gene and the g.49520870 G>A (rs17483548) polymorphism of the IRP2 gene and AMD risk as well as the modulation of this association by some environmental and life-style factors. Genotypes were determined in DNA from blood of 269 AMD patients and 116 controls by the allele-specific oligonucleotide-restriction fragment length polymorphism and the polymerase chain reaction-restriction fragment length polymorphism. An association between AMD, dry and wet forms of AMD and the G/G genotype of the g.32373708 G>A-IRP1 polymorphism was found (OR 3.40, 4.15, and 2.75). On the other hand, the G/A genotype reduced the risk of AMD as well as its dry or wet form (OR 0.23, 0.21, 0.26). Moreover, the G allele of the g.49520870 G>A-IRP2 polymorphism increased the risk of the dry form of the disease (OR 1.51) and the A/A genotype and the A allele decreased such risk (OR 0.43 and 0.66). Our data suggest that the g.32373708 G>A-IRP1 and g.49520870 G>A-IRP2 polymorphisms may be associated with increased risk for AMD.


Pathology & Oncology Research | 2013

BLM and RAD51 Genes Polymorphism and Susceptibility to Breast Cancer

Agnieszka Sassi; Marcin Popielarski; Ewelina Synowiec; Zbigniew Morawiec; Katarzyna Wozniak

DNA repair by homologous recombination is one of the main processes of DNA double strand breaks repair. In the present work we performed a case-control study (304 cases and 319 controls) to check an association between the genotypes of the c.-61 G>T and the g.38922 C>G polymorphisms of the RAD51 gene and the g.96267 A>C and the g.85394 A>G polymorphisms of the BLM gene and breast cancer occurrence. Genotypes were determined in DNA from peripheral blood by PCR-RLFP and by PCR-CTPP. We observed an association between breast cancer occurrence and the T/G genotype (OR 4.41) of the c.-61 G>T-RAD51 polymorphism, the A/A genotype (OR 1.69) of the g.85394 A>G-BLM polymorphism and the A/A genotype (OR 2.49) of the g.96267 A>C-BLM polymorphism. Moreover, we demonstrated a correlation between intra- and intergenes genotypes combinations and breast cancer occurrence. We found a correlation between progesterone receptor expression and the T/G genotype (OR 0.57) of the c.-61 G>T- RAD51 polymorphism. We also found a correlation between the T/G genotype (OR 1.86) and the T/T genotype (OR 0.56) of the c.-61 G>T- RAD51 polymorphism and the lymph node metastasis. We showed an association between the A/A genotype (OR 2.45) and the A/C genotype (OR 0.41) of the g.96267 A>C-BLM polymorphism and G3 grade of tumor. Our results suggest that the variability of the RAD51 and BLM genes may play a role in breast cancer occurrence. This role may be underlined by a common interaction between these genes.


International Journal of Molecular Sciences | 2014

Polymorphism of the flap endonuclease 1 gene in keratoconus and Fuchs endothelial corneal dystrophy.

Katarzyna A. Wojcik; Ewelina Synowiec; Piotr Polakowski; Sylwester Glowacki; Justyna Izdebska; Sophie Lloyd; Dieter Galea; Janusz Blasiak; Jerzy Szaflik; Jacek P. Szaflik

Oxidative stress is implicated in the pathogenesis of many diseases, including serious ocular diseases, keratoconus (KC) and Fuchs endothelial corneal dystrophy (FECD). Flap endonuclease 1 (FEN1) plays an important role in the repair of oxidative DNA damage in the base excision repair pathway. We determined the association between two single nucleotide polymorphisms (SNPs), c.–441G>A (rs174538) and g.61564299G>T (rs4246215), in the FEN1 gene and the occurrence of KC and FECD. This study involved 279 patients with KC, 225 patients with FECD and 322 control individuals. Polymerase chain reaction (PCR) and length polymorphism restriction fragment analysis (RFLP) were applied. The T/T genotype of the g.61564299G>T polymorphism was associated with an increased occurrence of KC and FECD. There was no association between the c.–441G>A polymorphism and either disease. However, the GG haplotype of both polymorphisms was observed more frequently and the GT haplotype less frequently in the KC group than the control. The AG haplotype was associated with increased FECD occurrence. Our findings suggest that the g.61564299G>T and c.–441G>A polymorphisms in the FEN1 gene may modulate the risk of keratoconus and Fuchs endothelial corneal dystrophy.


International Journal of Molecular Sciences | 2013

The Role of Mitochondrial DNA Damage and Repair in the Resistance of BCR/ABL-Expressing Cells to Tyrosine Kinase Inhibitors

Sylwester Glowacki; Ewelina Synowiec; Janusz Blasiak

Chronic myeloid leukemia (CML) is a hematological malignancy that arises from the transformation of stem hematopoietic cells by the fusion oncogene BCR/ABL and subsequent clonal expansion of BCR/ABL-positive progenitor leukemic cells. The BCR/ABL protein displays a constitutively increased tyrosine kinase activity that alters many regulatory pathways, leading to uncontrolled growth, impaired differentiation and increased resistance to apoptosis featured by leukemic cells. Current CML therapy is based on tyrosine kinase inhibitors (TKIs), primarily imatinib, which induce apoptosis in leukemic cells. However, some patients show primary resistance to TKIs while others develop it in the course of therapy. In both cases, resistance may be underlined by perturbations in apoptotic signaling in leukemic cells. As mitochondria may play an important role in such signaling, alteration in mitochondrial metabolism may change resistance to pro-apoptotic action of TKIs in BCR/ABL-positive cells. Because BCR/ABL may induce reactive oxygen species and unfaithful DNA repair, it may affect the stability of mitochondrial DNA, influencing mitochondrial apoptotic signaling and in this way change the sensitivity of CML cells to TKIs. Moreover, cancer cells, including BCR/ABL-positive cells, show an increased level of glucose metabolism, resulting from the shift from oxidative phosphorylation to glycolysis to supply ATP for extensive proliferation. Enhanced level of glycolysis may be associated with TKI resistance and requires change in the expression of several genes regulated mostly by hypoxia-inducible factor-1α, HIF-1α. Such regulation may be associated with the impaired mitochondrial respiratory system in CML cells. In summary, mitochondria and mitochondria-associated molecules and pathways may be attractive targets to overcome TKI resistance in CML.

Collaboration


Dive into the Ewelina Synowiec's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacek P. Szaflik

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Jerzy Szaflik

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piotr Czarny

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elzbieta Pawlowska

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Justyna Izdebska

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Janusz Szemraj

Medical University of Łódź

View shared research outputs
Researchain Logo
Decentralizing Knowledge