Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ewy Mathe is active.

Publication


Featured researches published by Ewy Mathe.


Proceedings of the National Academy of Sciences of the United States of America | 2009

MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers

Masahiro Seike; Akiteru Goto; Tetsuya Okano; Elise D. Bowman; Aaron J. Schetter; Izumi Horikawa; Ewy Mathe; Jin Jen; Ping Yang; Haruhiko Sugimura; Akihiko Gemma; Shoji Kudoh; Carlo M. Croce; Curtis C. Harris

Fifteen percent of lung cancer cases occur in never-smokers and show characteristics that are molecularly and clinically distinct from those in smokers. Epidermal growth factor receptor (EGFR) gene mutations, which are correlated with sensitivity to EGFR-tyrosine kinase inhibitors (EGFR-TKIs), are more frequent in never-smoker lung cancers. In this study, microRNA (miRNA) expression profiling of 28 cases of never-smoker lung cancer identified aberrantly expressed miRNAs, which were much fewer than in lung cancers of smokers and included miRNAs previously identified (e.g., up-regulated miR-21) and unidentified (e.g., down-regulated miR-138) in those smoker cases. The changes in expression of some of these miRNAs, including miR-21, were more remarkable in cases with EGFR mutations than in those without these mutations. A significant correlation between phosphorylated-EGFR (p-EGFR) and miR-21 levels in lung carcinoma cell lines and the suppression of miR-21 by an EGFR-TKI, AG1478, suggest that the EGFR signaling is a pathway positively regulating miR-21 expression. In the never-smoker–derived lung adenocarcinoma cell line H3255 with mutant EGFR and high levels of p-EGFR and miR-21, antisense inhibition of miR-21 enhanced AG1478-induced apoptosis. In a never-smoker–derived adenocarcinoma cell line H441 with wild-type EGFR, the antisense miR-21 not only showed the additive effect with AG1478 but also induced apoptosis by itself. These results suggest that aberrantly increased expression of miR-21, which is enhanced further by the activated EGFR signaling pathway, plays a significant role in lung carcinogenesis in never-smokers, as well as in smokers, and is a potential therapeutic target in both EGFR-mutant and wild-type cases.


Clinical Cancer Research | 2009

MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: Associations with survival

Ewy Mathe; Huong Nguyen Giang; Elise D. Bowman; Yiqiang Zhao; Anuradha Budhu; Aaron J. Schetter; Rosemary Braun; Mark Reimers; Kensuke Kumamoto; Duncan B. Hughes; Nasserk Altorki; Alan G. Casson; Chang Gong Liu; Wei Wang Xin; Nozomu Yanaihara; Nobutoshi Hagiwara; Andrew J. Dannenberg; Masao Miyashita; Carlo M. Croce; Curtis C. Harris

Purpose: The dismal outcome of esophageal cancer patients highlights the need for novel prognostic biomarkers, such as microRNAs (miRNA). Although recent studies have established the role of miRNAs in esophageal carcinoma, a comprehensive multicenter study investigating different histologic types, including squamous cell carcinoma (SCC) and adenocarcinoma with or without Barretts, is still lacking. Experimental Design: miRNA expression was measured in cancerous and adjacent noncancerous tissue pairs collected from 100 adenocarcinoma and 70 SCC patients enrolled at four clinical centers from the United States, Canada, and Japan. Microarray-based expression was measured in a subset of samples in two cohorts and was validated in all available samples. Results: In adenocarcinoma patients, miR-21, miR-223, miR-192, and miR-194 expression was elevated, whereas miR-203 expression was reduced in cancerous compared with noncancerous tissue. In SCC patients, we found elevated miR-21 and reduced miR-375 expression levels in cancerous compared with noncancerous tissue. When comparing cancerous tissue expression between adenocarcinoma and SCC patients, miR-194 and miR-375 were elevated in adenocarcinoma patients. Significantly, elevated miR-21 expression in noncancerous tissue of SCC patients and reduced levels of miR-375 in cancerous tissue of adenocarcinoma patients with Barretts were strongly associated with worse prognosis. Associations with prognosis were independent of tumor stage or nodal status, cohort type, and chemoradiation therapy. Conclusions: Our multicenter-based results highlight miRNAs involved in major histologic types of esophageal carcinoma and uncover significant associations with prognosis. Elucidating miRNAs relevant to esophageal carcinogenesis is potentially clinically useful for developing prognostic biomarkers and identifying novel drug targets and therapies. (Clin Cancer Res 2009;15(19):6192–200)


Nucleic Acids Research | 2006

Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods

Ewy Mathe; Magali Olivier; Shunsuke Kato; Chikashi Ishioka; Pierre Hainaut; Sean V. Tavtigian

Prediction of the biological effect of missense substitutions has become important because they are often observed in known or candidate disease susceptibility genes. In this paper, we carried out a 3-step analysis of 1514 missense substitutions in the DNA-binding domain (DBD) of TP53, the most frequently mutated gene in human cancers. First, we calculated two types of conservation scores based on a TP53 multiple sequence alignment (MSA) for each substitution: (i) Grantham Variation (GV), which measures the degree of biochemical variation among amino acids found at a given position in the MSA; (ii) Grantham Deviation (GD), which reflects the ‘biochemical distance’ of the mutant amino acid from the observed amino acid at a particular position (given by GV). Second, we used a method that combines GV and GD scores, Align-GVGD, to predict the transactivation activity of each missense substitution. We compared our predictions against experimentally measured transactivation activity (yeast assays) to evaluate their accuracy. Finally, the prediction results were compared with those obtained by the program Sorting Intolerant from Tolerant (SIFT) and Dayhoffs classification. Our predictions yielded high prediction accuracy for mutants showing a loss of transactivation (∼88% specificity) with lower prediction accuracy for mutants with transactivation similar to that of the wild-type (67.9 to 71.2% sensitivity). Align-GVGD results were comparable to SIFT (88.3 to 90.6% and 67.4 to 70.3% specificity and sensitivity, respectively) and outperformed Dayhoffs classification (80 and 40.9% specificity and sensitivity, respectively). These results further demonstrate the utility of the Align-GVGD method, which was previously applied to BRCA1. Align-GVGD is available online at .


Nature Cell Biology | 2009

p53 isoforms Δ133p53 and p53β are endogenous regulators of replicative cellular senescence

Kaori Fujita; Abdul M. Mondal; Izumi Horikawa; Giang Hong Nguyen; Kensuke Kumamoto; Jane J. Sohn; Elise D. Bowman; Ewy Mathe; Aaron J. Schetter; Sharon R. Pine; Helen Ji; Borivoj Vojtesek; Jean-Christophe Bourdon; David P. Lane; Curtis C. Harris

The finite proliferative potential of normal human cells leads to replicative cellular senescence, which is a critical barrier to tumour progression in vivo. We show that the human p53 isoforms Δ133p53 and p53β function in an endogenous regulatory mechanism for p53-mediated replicative senescence. Induced p53β and diminished Δ133p53 were associated with replicative senescence, but not oncogene-induced senescence, in normal human fibroblasts. The replicatively senescent fibroblasts also expressed increased levels of miR-34a, a p53-induced microRNA, the antisense inhibition of which delayed the onset of replicative senescence. The siRNA (short interfering RNA)-mediated knockdown of endogenous Δ133p53 induced cellular senescence, which was attributed to the regulation of p21WAF1 and other p53 transcriptional target genes. In overexpression experiments, whereas p53β cooperated with full-length p53 to accelerate cellular senescence, Δ133p53 repressed miR-34a expression and extended the cellular replicative lifespan, providing a functional connection of this microRNA to the p53 isoform-mediated regulation of senescence. The senescence-associated signature of p53 isoform expression (that is, elevated p53β and reduced Δ133p53) was observed in vivo in colon adenomas with senescent phenotypes. The increased Δ133p53 and decreased p53β isoform expression found in colon carcinoma may signal an escape from the senescence barrier during the progression from adenoma to carcinoma.


Journal of Clinical Investigation | 2014

MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis

Atsushi Terunuma; Nagireddy Putluri; Prachi Mishra; Ewy Mathe; Tiffany H. Dorsey; Ming Yi; Tiffany A. Wallace; Haleem J. Issaq; Ming Zhou; J. Keith Killian; Holly Stevenson; Edward D. Karoly; King C. Chan; Susmita Samanta; DaRue A. Prieto; Tiffany Hsu; Sarah J. Kurley; Vasanta Putluri; Rajni Sonavane; Daniel C. Edelman; Jacob Wulff; Adrienne M. Starks; Yinmeng Yang; Rick A. Kittles; Harry G. Yfantis; Dong H. Lee; Olga B. Ioffe; Rachel Schiff; Robert M. Stephens; Paul S. Meltzer

Metabolic profiling of cancer cells has recently been established as a promising tool for the development of therapies and identification of cancer biomarkers. Here we characterized the metabolomic profile of human breast tumors and uncovered intrinsic metabolite signatures in these tumors using an untargeted discovery approach and validation of key metabolites. The oncometabolite 2-hydroxyglutarate (2HG) accumulated at high levels in a subset of tumors and human breast cancer cell lines. We discovered an association between increased 2HG levels and MYC pathway activation in breast cancer, and further corroborated this relationship using MYC overexpression and knockdown in human mammary epithelial and breast cancer cells. Further analyses revealed globally increased DNA methylation in 2HG-high tumors and identified a tumor subtype with high tissue 2HG and a distinct DNA methylation pattern that was associated with poor prognosis and occurred with higher frequency in African-American patients. Tumors of this subtype had a stem cell-like transcriptional signature and tended to overexpress glutaminase, suggestive of a functional relationship between glutamine and 2HG metabolism in breast cancer. Accordingly, 13C-labeled glutamine was incorporated into 2HG in cells with aberrant 2HG accumulation, whereas pharmacologic and siRNA-mediated glutaminase inhibition reduced 2HG levels. Our findings implicate 2HG as a candidate breast cancer oncometabolite associated with MYC activation and poor prognosis.


Nature | 2012

DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes

Ofir Hakim; Wolfgang Resch; Arito Yamane; Isaac A. Klein; Kyong-Rim Kieffer-Kwon; Mila Jankovic; Thiago Y. Oliveira; Anne Bothmer; Ty C. Voss; Camilo Ansarah-Sobrinho; Ewy Mathe; Genqing Liang; Jesse Cobell; Hirotaka Nakahashi; Davide F. Robbiani; André Nussenzweig; Gordon L. Hager; Michel C. Nussenzweig; Rafael Casellas

Recurrent chromosomal translocations underlie both haematopoietic and solid tumours. Their origin has been ascribed to selection of random rearrangements, targeted DNA damage, or frequent nuclear interactions between translocation partners; however, the relative contribution of each of these elements has not been measured directly or on a large scale. Here we examine the role of nuclear architecture and frequency of DNA damage in the genesis of chromosomal translocations by measuring these parameters simultaneously in cultured mouse B lymphocytes. In the absence of recurrent DNA damage, translocations between Igh or Myc and all other genes are directly related to their contact frequency. Conversely, translocations associated with recurrent site-directed DNA damage are proportional to the rate of DNA break formation, as measured by replication protein A accumulation at the site of damage. Thus, non-targeted rearrangements reflect nuclear organization whereas DNA break formation governs the location and frequency of recurrent translocations, including those driving B-cell malignancies.


Clinical Cancer Research | 2011

The Association of MicroRNA Expression with Prognosis and Progression in Early-Stage, Non–Small Cell Lung Adenocarcinoma: A Retrospective Analysis of Three Cohorts

Motonobu Saito; Aaron J. Schetter; Steen Mollerup; Takashi Kohno; Vidar Skaug; Elise D. Bowman; Ewy Mathe; Seiichi Takenoshita; Jun Yokota; Aage Haugen; Curtis C. Harris

Purpose: There is increasing evidence that altered microRNA expression is associated with tumor progression and survival in cancer patients. We tested if the expression of specific microRNAs was associated with prognosis and disease progression in early-stage lung adenocarcinoma. Experimental Design: The expression of miR-21, miR-17, and miR-155 was measured by quantitative RT-PCR in tissues from 317 non–small cell lung cancer (NSCLC) patients that originated from Maryland, Norway, and Japan. Kaplan-Meier and Cox regression analysis evaluated associations of microRNA expression with cancer-specific mortality and disease-free survival. Results: Elevated miR-21 (HR 2.06, 1.13–3.75), miR-17 (HR 2.00, 1.10–3.61), and miR-155 (HR 2.37, 1.27–4.42) was associated with worse cancer-specific mortality in the Maryland cohort. These were evaluated in two additional cohorts and only miR-21 was associated with worse cancer-specific mortality in the Norwegian cohort (HR 2.78, 1.22–6.31) and worse relapse-free survival in the Japanese cohort (HR 2.82, 1.57–5.07). More advanced stage tumors expressed significantly higher levels of miR-21 compared with TNM stage I tumors. TNM stage I patients were evaluated separately and high levels of miR-21 was associated with worse cancer-specific mortality (HR 2.16, 1.11–4.21) and relapse-free survival (3.40, 1.57–7.36) independent of other clinical factors. Conclusions: This is the first study to report that increased miR-21 expression is associated with disease progression and survival in stage I lung cancer. This suggests that expression of miR-21 may contribute to lung carcinogenesis and serve as a therapeutic target or early-stage prognostic biomarker for lung adenocarcinoma. Clin Cancer Res; 17(7); 1875–82. ©2011 AACR.


Clinical Cancer Research | 2009

Association of Inflammation-Related and microRNA Gene Expression with Cancer-Specific Mortality of Colon Adenocarcinoma

Aaron J. Schetter; G Nguyen; Elise D. Bowman; Ewy Mathe; Siu Tsan Yuen; Jason E. Hawkes; Carlo M. Croce; Suet Yi Leung; Curtis C. Harris

Purpose: Inflammatory genes and microRNAs have roles in colon carcinogenesis; therefore, they may provide useful biomarkers for colon cancer. This study examines the potential clinical utility of an inflammatory gene expression signature as a prognostic biomarker for colon cancer in addition to previously examined miR-21 expression. Experimental Design: Quantitative reverse transcriptase-PCR. was used to measure the expression of 23 inflammatory genes in colon adenocarcinomas and adjacent noncancerous tissues from 196 patients. These data were used to develop models for cancer-specific mortality on a training cohort (n = 57), and this model was tested in both a test (n = 56) and a validation (n = 83) cohort. Expression data for miR-21 were available for these patients and were compared and combined with inflammatory gene expression. Results: PRG1, IL-10, CD68, IL-23a, and IL-12a expression in noncancerous tissue, and PRG1, ANXA1, IL-23a, IL-17a, FOXP3, and HLA-DRA expression in tumor tissues were associated with poor prognosis based on Cox regression (|Z-score| >1.5) and were used to generate the inflammatory risk score (IRS). IRS was associated with cancer-specific mortality in the training, test (P = 0.01), and validation (P = 0.02) cohorts. This association was strong for stage II cases (P = 0.002). Expression of miR-21 was associated with IL-6, IL-8, IL-10, IL-12a, and NOS2a, providing evidence that the function of this microRNA and these inflammatory genes are linked. Both IRS and miR-21 expression were independently associated with cancer-specific mortality, including stage II patients alone. Conclusion: IRS and miR-21 expression are independent predictors of colon cancer prognosis and may provide a clinically useful tool to identify high-risk patients. (Clin Cancer Res 2009;15(18):5878–87)


Cancer Research | 2008

Nitric Oxide Is a Key Component in Inflammation-Accelerated Tumorigenesis

S. Perwez Hussain; Peijun He; Jeffery Subleski; Lorne J. Hofseth; Glenwood E. Trivers; Leah E. Mechanic; Anne B. Hofseth; Mark E. Bernard; Jonathan Schwank; G Nguyen; Ewy Mathe; Draginja Djurickovic; Diana C. Haines; Jonathan M. Weiss; Timothy C. Back; Eilene Gruys; Victor E. Laubach; Robert H. Wiltrout; Curtis C. Harris

Nitric oxide (NO(*)), an important signaling molecule and a component of inflammatory response, is involved in tumorigenesis. However, the quantity of NO(*) and the cellular microenvironment influences the role of NO(*) in tumor development. We used a genetic strategy to test the hypothesis that an inflammatory microenvironment with an enhanced level of NO(*) accelerates spontaneous tumor development. C. parvum-induced inflammation and increased NO(*) synthase-2 (NOS2) expression coincided with accelerated spontaneous tumor development, mostly lymphomas, in p53-/-NOS2+/+ C57BL6 mice when compared with the controls (P = 0.001). However, p53-/-NOS2-/- mice did not show any difference in tumor latency between C. parvum-treated and control groups. In C. parvum-treated p53-/-NOS2+/+ mice, tumor development was preceded by a higher expression of NOS2 and phosphorylated Akt-Ser(473) (pAkt-Ser473) in spleen, increased cell proliferation measured by Ki-67 IHC in spleen and thymus, and a lower apoptotic index and CD95-L expression in spleen and thymus. C. parvum-treated p53-/-NOS2+/+ mice showed an increase in the number of Foxp3(+) T-reg cells, dendritic cells (DC), as well as increased CD80(+), CD86(+), CD40(+), and CD83(+) on DC in the spleen. Regulatory T-cells (T-reg) and the maturation of DC may modulate tumorigenesis. An increase in the FoxP3(+)T-reg cells in C. parvum-treated p53-/-NOS2+/+ mice indicates a role of NO(*) in the regulation of T-reg cells that may contribute to a protumor shift of the immune environment favoring an accelerated tumor development. These data provide genetic and mechanistic evidence that an inflammatory microenvironment and an increased level of NO(*) can accelerate tumor development.


Cancer Research | 2014

Noninvasive Urinary Metabolomic Profiling Identifies Diagnostic and Prognostic Markers in Lung Cancer

Ewy Mathe; Andrew D. Patterson; Majda Haznadar; Soumen K. Manna; Kristopher W. Krausz; Elise D. Bowman; Peter G. Shields; Jeffrey R. Idle; Philip B. Smith; Katsuhiro Anami; Dickran Kazandjian; Emmanuel Hatzakis; Frank J. Gonzalez; Curtis C. Harris

Lung cancer remains the most common cause of cancer deaths worldwide, yet there is currently a lack of diagnostic noninvasive biomarkers that could guide treatment decisions. Small molecules (<1,500 Da) were measured in urine collected from 469 patients with lung cancer and 536 population controls using unbiased liquid chromatography/mass spectrometry. Clinical putative diagnostic and prognostic biomarkers were validated by quantitation and normalized to creatinine levels at two different time points and further confirmed in an independent sample set, which comprises 80 cases and 78 population controls, with similar demographic and clinical characteristics when compared with the training set. Creatine riboside (IUPAC name: 2-{2-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)-oxolan-2-yl]-1-methylcarbamimidamido}acetic acid), a novel molecule identified in this study, and N-acetylneuraminic acid (NANA) were each significantly (P < 0.00001) elevated in non-small cell lung cancer and associated with worse prognosis [HR = 1.81 (P = 0.0002), and 1.54 (P = 0.025), respectively]. Creatine riboside was the strongest classifier of lung cancer status in all and stage I-II cases, important for early detection, and also associated with worse prognosis in stage I-II lung cancer (HR = 1.71, P = 0.048). All measurements were highly reproducible with intraclass correlation coefficients ranging from 0.82 to 0.99. Both metabolites were significantly (P < 0.03) enriched in tumor tissue compared with adjacent nontumor tissue (N = 48), thus revealing their direct association with tumor metabolism. Creatine riboside and NANA may be robust urinary clinical metabolomic markers that are elevated in tumor tissue and associated with early lung cancer diagnosis and worse prognosis.

Collaboration


Dive into the Ewy Mathe's collaboration.

Top Co-Authors

Avatar

Curtis C. Harris

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elise D. Bowman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Aaron J. Schetter

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

G Nguyen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Majda Haznadar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Resch

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge