Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Alex Feltus is active.

Publication


Featured researches published by F. Alex Feltus.


Nature | 2009

The Sorghum bicolor genome and the diversification of grasses

Andrew H. Paterson; John E. Bowers; Rémy Bruggmann; Inna Dubchak; Jane Grimwood; Heidrun Gundlach; Georg Haberer; Uffe Hellsten; Therese Mitros; Alexander Poliakov; Jeremy Schmutz; Manuel Spannagl; Haibao Tang; Xiyin Wang; Thomas Wicker; Arvind K. Bharti; Jarrod Chapman; F. Alex Feltus; Udo Gowik; Igor V. Grigoriev; Eric Lyons; Christopher A. Maher; Mihaela Martis; Apurva Narechania; Robert Otillar; Bryan W. Penning; Asaf Salamov; Yu Wang; Lifang Zhang; Nicholas C. Carpita

Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the ∼730-megabase Sorghum bicolor (L.) Moench genome, placing ∼98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the ∼75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization ∼70 million years ago, most duplicated gene sets lost one member before the sorghum–rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum’s drought tolerance.


Nature | 2008

The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)

Ray Ming; Shaobin Hou; Yun Feng; Qingyi Yu; Alexandre Dionne-Laporte; Jimmy H. Saw; Pavel Senin; Wei Wang; Benjamin V. Ly; Kanako L. T. Lewis; Lu Feng; Meghan R. Jones; Rachel L. Skelton; Jan E. Murray; Cuixia Chen; Wubin Qian; Junguo Shen; Peng Du; Moriah Eustice; Eric J. Tong; Haibao Tang; Eric Lyons; Robert E. Paull; Todd P. Michael; Kerr Wall; Danny W. Rice; Henrik H. Albert; Ming Li Wang; Yun J. Zhu; Michael C. Schatz

Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3× draft genome sequence of ‘SunUp’ papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica’s distinguishing morpho-physiological, medicinal and nutritional properties.


Genetics | 2007

Meta-analysis of Polyploid Cotton QTL Shows Unequal Contributions of Subgenomes to a Complex Network of Genes and Gene Clusters Implicated in Lint Fiber Development

Junkang Rong; F. Alex Feltus; Vijay N. Waghmare; Gary J. Pierce; Peng W. Chee; Xavier Draye; Yehoshua Saranga; Robert J. Wright; Thea A. Wilkins; O. Lloyd May; C. Wayne Smith; John R. Gannaway; Jonathan F. Wendel; Andrew H. Paterson

QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiber-producing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Sequencing papaya X and Y h chromosomes reveals molecular basis of incipient sex chromosome evolution

Jianping Wang; Jong Kuk Na; Qingyi Yu; Andrea R. Gschwend; Jennifer Han; Fanchang Zeng; Rishi Aryal; Robert VanBuren; Jan E. Murray; Wenli Zhang; Rafael Navajas-Pérez; F. Alex Feltus; Cornelia Lemke; Eric J. Tong; Cuixia Chen; Ching Man Wai; Ratnesh Singh; Ming Li Wang; Xiang Jia Min; Maqsudul Alam; Deborah Charlesworth; Paul H. Moore; Jiming Jiang; Andrew H. Paterson; Ray Ming

Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Yh). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Yh chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Yh chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution.


Plant Physiology | 2011

Gene Coexpression Network Alignment and Conservation of Gene Modules between Two Grass Species: Maize and Rice

Stephen P. Ficklin; F. Alex Feltus

One major objective for plant biology is the discovery of molecular subsystems underlying complex traits. The use of genetic and genomic resources combined in a systems genetics approach offers a means for approaching this goal. This study describes a maize (Zea mays) gene coexpression network built from publicly available expression arrays. The maize network consisted of 2,071 loci that were divided into 34 distinct modules that contained 1,928 enriched functional annotation terms and 35 cofunctional gene clusters. Of note, 391 maize genes of unknown function were found to be coexpressed within modules along with genes of known function. A global network alignment was made between this maize network and a previously described rice (Oryza sativa) coexpression network. The IsoRankN tool was used, which incorporates both gene homology and network topology for the alignment. A total of 1,173 aligned loci were detected between the two grass networks, which condensed into 154 conserved subgraphs that preserved 4,758 coexpression edges in rice and 6,105 coexpression edges in maize. This study provides an early view into maize coexpression space and provides an initial network-based framework for the translation of functional genomic and genetic information between these two vital agricultural species.


PLOS ONE | 2011

Modes of Gene Duplication Contribute Differently to Genetic Novelty and Redundancy, but Show Parallels across Divergent Angiosperms

Yupeng Wang; Xiyin Wang; Haibao Tang; Xu Tan; Stephen P. Ficklin; F. Alex Feltus; Andrew H. Paterson

Background Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. Results In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. Conclusion Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution.


Plant Physiology | 2010

The Association of Multiple Interacting Genes with Specific Phenotypes in Rice Using Gene Coexpression Networks

Stephen P. Ficklin; Feng Luo; F. Alex Feltus

Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes.


Plant Science | 2014

Systems genetics: A paradigm to improve discovery of candidate genes and mechanisms underlying complex traits

F. Alex Feltus

Understanding the control of any trait optimally requires the detection of causal genes, gene interaction, and mechanism of action to discover and model the biochemical pathways underlying the expressed phenotype. Functional genomics techniques, including RNA expression profiling via microarray and high-throughput DNA sequencing, allow for the precise genome localization of biological information. Powerful genetic approaches, including quantitative trait locus (QTL) and genome-wide association study mapping, link phenotype with genome positions, yet genetics is less precise in localizing the relevant mechanistic information encoded in DNA. The coupling of salient functional genomic signals with genetically mapped positions is an appealing approach to discover meaningful gene-phenotype relationships. Techniques used to define this genetic-genomic convergence comprise the field of systems genetics. This short review will address an application of systems genetics where RNA profiles are associated with genetically mapped genome positions of individual genes (eQTL mapping) or as gene sets (co-expression network modules). Both approaches can be applied for knowledge independent selection of candidate genes (and possible control mechanisms) underlying complex traits where multiple, likely unlinked, genomic regions might control specific complex traits.


New Phytologist | 2012

Evidence of function for conserved noncoding sequences in Arabidopsis thaliana

Jacob B. Spangler; Sabarinath Subramaniam; Michael Freeling; F. Alex Feltus

• Whole genome duplication events provide a lineage with a large reservoir of genes that can be molded by evolutionary forces into phenotypes that fit alternative environments. A well-studied whole genome duplication, the α-event, occurred in an ancestor of the model plant Arabidopsis thaliana. Retained segments of the α-event have been defined in recent years in the form of duplicate protein coding sequences (α-pairs) and associated conserved noncoding DNA sequences (CNSs). Our aim was to identify any association between CNSs and α-pair co-functionality at the gene expression level. • Here, we tested for correlation between CNS counts and α-pair co-expression and expression intensity across nine expression datasets: aerial tissue, flowers, leaves, roots, rosettes, seedlings, seeds, shoots and whole plants. • We provide evidence for a putative regulatory role of the CNSs. The association of CNSs with α-pair co-expression and expression intensity varied by gene function, subgene position and the presence of transcription factor binding motifs. A range of possible CNS regulatory mechanisms, including intron-mediated enhancement, messenger RNA fold stability and transcriptional regulation, are discussed. • This study provides a framework to understand how CNS motifs are involved in the maintenance of gene expression after a whole genome duplication event.


Molecular Ecology Resources | 2008

Novel nuclear intron-spanning primers for Arecaceae evolutionary biology

Christine D. Bacon; F. Alex Feltus; Andrew H. Paterson; C. Donovan Bailey

In this study, 96 nuclear ‘conserved intron‐scanning primers’ were screened across subfamilies the Arecaceae (palms) for potential use in research focused on palm evolutionary biology. Primers were evaluated based on their ability to amplify single polymerase chain reaction products in Arecaceae, the clarity of sequencing reads, and the interspecific variability observed. Ultimately, the results suggest that: (i) seven of the loci are likely to be suitable when comparing non‐Arecaceae outgroups and Arecaceae ingroups; (ii) seven loci may be of use when comparing subfamilies of Arecaceae; and (iii) four of the loci may be of use when comparing closely related genera.

Collaboration


Dive into the F. Alex Feltus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen P. Ficklin

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Qingyi Yu

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiming Jiang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul H. Moore

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge