Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Andreu is active.

Publication


Featured researches published by F. Andreu.


Transactions of the American Mathematical Society | 1999

Existence and uniqueness for a degenerate parabolic equation with ¹-data

F. Andreu; José M. Mazón; S. de León; J. Toledo

In this paper we study existence and uniqueness of solutions for the boundary-value problem, with initial datum in L1(Ω), ut = div a(x, Du) in (0,∞)×Ω, − ∂u ∂ηa ∈ β(u) on (0,∞)× ∂Ω, u(x, 0) = u0(x) in Ω, where a is a Caratheodory function satisfying the classical Leray-Lions hypothesis, ∂/∂ηa is the Neumann boundary operator associated to a, Du the gradient of u and β is a maximal monotone graph in R× R with 0 ∈ β(0).


Siam Journal on Mathematical Analysis | 2009

A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION WITH NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS

F. Andreu; José M. Mazón; Julio D. Rossi; J. Toledo

In this paper we study the nonlocal p-Laplacian-type diffusion equation


Comptes Rendus De L Academie Des Sciences Serie I-mathematique | 2000

MINIMIZING TOTAL VARIATION FLOW

F. Andreu; Coloma Ballester; Vicent Caselles; José M. Mazón

u_t(t,x)=\int_{\mathbb{R}^N}J(x-y)|u(t,y)-u(t,x)|^{p-2}(u(t,y)-u(t,x))\,dy


Nonlinear Analysis-theory Methods & Applications | 2002

Porous medium equation with absorption and a nonlinear boundary condition

F. Andreu; José M. Mazón; J. Toledo; Julio D. Rossi

,


Interfaces and Free Boundaries | 2006

A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions

F. Andreu; Noureddine Igbida; José M. Mazón; J. Toledo

(t,x)\in]0,T[\times\Omega


Mathematical Models and Methods in Applied Sciences | 2002

EXISTENCE RESULTS FOR L1 DATA OF SOME QUASI-LINEAR PARABOLIC PROBLEMS WITH A QUADRATIC GRADIENT TERM AND SOURCE

F. Andreu; S. Segura De Léon; L. Boccardo; L. Orsina

, with


Siam Journal on Mathematical Analysis | 2012

Radially Symmetric Solutions of a Tempered Diffusion Equation. A Porous Media, Flux-Limited Case

F. Andreu; Vicent Caselles; José M. Mazón; Juan Soler; M. Verbeni

u(t,x)=\psi(x)


Communications in Contemporary Mathematics | 2004

THE MINIMIZING TOTAL VARIATION FLOW WITH MEASURE INITIAL CONDITIONS

F. Andreu; José M. Mazón; J.S. Moll; Vicent Caselles

for


Journal of Differential Equations | 2012

On a nonlinear flux-limited equation arising in the transport of morphogens

F. Andreu; Juan Carlos Llodra Calvo; José M. Mazón; Juan Soler

(t,x)\in]0,T[\times(\mathbb{R}^N\setminus\Omega)


Mathematical Models and Methods in Applied Sciences | 2000

ENTROPY SOLUTIONS IN THE STUDY OF ANTIPLANE SHEAR DEFORMATIONS FOR ELASTIC SOLIDS

F. Andreu; José M. Mazón; Mircea Sofonea

. If

Collaboration


Dive into the F. Andreu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Toledo

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar

Julio D. Rossi

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Simondon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Noureddine Igbida

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.S. Moll

University of Valencia

View shared research outputs
Researchain Logo
Decentralizing Knowledge