Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Auchère is active.

Publication


Featured researches published by F. Auchère.


Optical Science and Technology, SPIE's 48th Annual Meeting | 2004

EUVI: the STEREO-SECCHI extreme ultraviolet imager

J.-P. Wuelser; James R. Lemen; Theodore D. Tarbell; C. Jacob Wolfson; Joseph C. Cannon; Brock A. Carpenter; Dexter W. Duncan; Glenn S. Gradwohl; Syndie B. Meyer; Augustus S. Moore; Rosemarie L. Navarro; J. Dunagan Pearson; George R. Rossi; Larry Springer; Russell A. Howard; John Daniel Moses; Jeffrey Scott Newmark; J.-P. Delaboudiniere; G. E. Artzner; F. Auchère; Marie Bougnet; Philippe Bouyries; F. Bridou; Jean-Yves Clotaire; Gerard Colas; Franck Delmotte; Arnaud Jérôme; Michel Lamare; Raymond Mercier; Michel Mullot

The Extreme Ultraviolet Imager (EUVI) is part of the SECCHI instrument suite currently being developed for the NASA STEREO mission. Identical EUVI telescopes on the two STEREO spacecraft will study the structure and evolution of the solar corona in three dimensions, and specifically focus on the initiation and early evolution of coronal mass ejections (CMEs). The EUVI telescope is being developed at the Lockheed Martin Solar and Astrophysics Lab. The SECCHI investigation is led by the Naval Research Lab. The EUVI’s 2048 x 2048 pixel detectors have a field of view out to 1.7 solar radii, and observe in four spectral channels that span the 0.1 to 20 MK temperature range. In addition to its view from two vantage points, the EUVI will provide a substantial improvement in image resolution and image cadence over its predecessor SOHO-EIT, while complying with the more restricted mass, power, and volume allocations on the STEREO mission.


Astronomy and Astrophysics | 2004

On the nature of EIT waves, EUV dimmings and their link to CMEs

A. N. Zhukov; F. Auchère

EIT waves and extreme-ultraviolet (EUV) dimmings attract particular attention as they frequently accompany Coronal Mass Ejections (CMEs). We present several examples of EIT waves and EUV dimmings with particular morphologies previously unreported in the literature. We report for the first time an EIT wave in the Fe XV (284 A) bandpass of the SOHO/EIT instrument. The observations of this event confirm previous results that an EIT wave is a purely coronal phenomenon that does not propagate in the transition region plasma. Two EIT wave events initiated close to the solar limb are investigated, thus per- mitting us to see simultaneously the wave and the magnetic configuration of the CME. These observations suggest that EIT wave can be regarded as a bimodal phenomenon. The wave mode represents a wave-like propagating disturbance. Its char- acteristic features are propagation of a bright front to large distances from dimming sites and quasi-circular appearance. The eruptive mode is the propagation of a dimming and of an EIT wave as a result of successive opening of magnetic field lines during the CME lift-off. It can be identified by noting the expansion of a dimming and the appearance of another dimming ahead of a bright front. We reveal the temperature structure of the EUV dimmings that appeared after the classical EIT wave event on May 12, 1997, using differential emission measure (DEM) maps obtained through the analysis of images in four EIT bandpasses. The part of the CME mass contained in the low corona observed by the EIT is estimated to be about 10 15 g. It appears that around 50% of this total CME mass in the low corona is contained outside of transient coronal holes. It is shown that at present it is difficult to reconcile all the observational facts into a coherent physical model. In particular, the physical nature of the wave mode of EIT waves remains elusive.


Solar Physics | 2013

On-Orbit Degradation of Solar Instruments

A. BenMoussa; S. Gissot; U. Schühle; G. Del Zanna; F. Auchère; Sabri Mekaoui; Andrew Jones; D. Walton; C. J. Eyles; Gérard Thuillier; Daniel B. Seaton; Ingolf E. Dammasch; Gaël Cessateur; Mustapha Meftah; V. Andretta; David Berghmans; Danielle Bewsher; D. Bolsée; L. Bradley; Daniel Stephen Brown; Phillip C. Chamberlin; Steven Dewitte; Leonid V. Didkovsky; Marie Dominique; F. G. Eparvier; Thomas Foujols; Didier Gillotay; B. Giordanengo; Jean-Philippe Halain; R. A. Hock

We present the lessons learned about the degradation observed in several space solar missions, based on contributions at the Workshop about On-Orbit Degradation of Solar and Space Weather Instruments that took place at the Solar Terrestrial Centre of Excellence (Royal Observatory of Belgium) in Brussels on 3 May 2012. The aim of this workshop was to open discussions related to the degradation observed in Sun-observing instruments exposed to the effects of the space environment. This article summarizes the various lessons learned and offers recommendations to reduce or correct expected degradation with the goal of increasing the useful lifespan of future and ongoing space missions.


The Astronomy and Astrophysics Review | 2011

Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar coronal holes

K. Wilhelm; Lucia Abbo; F. Auchère; Nicolas Barbey; Li Feng; A. H. Gabriel; Silvio Giordano; Shinsuke Imada; Antoine Llebaria; William H. Matthaeus; G. Poletto; Noureddine Raouafi; S. T. Suess; L. Teriaca; Yi-Ming Wang

Coronal plumes, which extend from solar coronal holes (CH) into the high corona and—possibly—into the solar wind (SW), can now continuously be studied with modern telescopes and spectrometers on spacecraft, in addition to investigations from the ground, in particular, during total eclipses. Despite the large amount of data available on these prominent features and related phenomena, many questions remained unanswered as to their generation and relative contributions to the high-speed streams emanating from CHs. An understanding of the processes of plume formation and evolution requires a better knowledge of the physical conditions at the base of CHs, in plumes and in the surrounding inter-plume regions. More specifically, information is needed on the magnetic field configuration, the electron densities and temperatures, effective ion temperatures, non-thermal motions, plume cross sections relative to the size of a CH, the plasma bulk speeds, as well as any plume signatures in the SW. In spring 2007, the authors proposed a study on ‘Structure and dynamics of coronal plumes and inter-plume regions in solar coronal holes’ to the International Space Science Institute (ISSI) in Bern to clarify some of these aspects by considering relevant observations and the extensive literature. This review summarizes the results and conclusions of the study. Stereoscopic observations allowed us to include three-dimensional reconstructions of plumes. Multi-instrument investigations carried out during several campaigns led to progress in some areas, such as plasma densities, temperatures, plume structure and the relation to other solar phenomena, but not all questions could be answered concerning the details of plume generation process(es) and interaction with the SW.


The Astrophysical Journal | 2010

Large-scale Extreme-Ultraviolet Disturbances Associated with a Limb Coronal Mass Ejection

Y. Dai; F. Auchère; J.-C. Vial; Y. H. Tang; W. G. Zong

We present composite observations of a coronal mass ejection (CME) and the associated large-scale extreme-ultraviolet (EUV) disturbances on 2007 December 31 by the Extreme-ultraviolet Imager (EUVI) and COR1 coronagraph on board the recent Solar Terrestrial Relations Observatory mission. For this limb event, the EUV disturbances exhibit some typical characteristics of EUV Imaging Telescope waves: (1) in the 195 A bandpass, diffuse brightenings are observed propagating oppositely away from the flare site with a velocity of ~260 km s–1, leaving dimmings behind; (2) when the brightenings encounter the boundary of a polar coronal hole, they stop there to form a stationary front. Multi-temperature analysis of the propagating EUV disturbances favors a heating process over a density enhancement in the disturbance region. Furthermore, the EUVI-COR1 composite display shows unambiguously that the propagation of the diffuse brightenings coincides with a large lateral expansion of the CME, which consequently results in a double-loop-structured CME leading edge. Based on these observational facts, we suggest that the wave-like EUV disturbances are a result of magnetic reconfiguration related to the CME liftoff rather than true waves in the corona. Reconnections between the expanding CME magnetic field lines and surrounding quiet-Sun magnetic loops account for the propagating diffuse brightenings; dimmings appear behind them as a consequence of volume expansion. X-ray and radio data provide us with complementary evidence.


The Astrophysical Journal | 2013

Can the Differential Emission Measure Constrain the Timescale of Energy Deposition in the Corona

C. Guennou; F. Auchère; James A. Klimchuk; K. Bocchialini; Susanna Parenti

In this paper, the ability of the Hinode/EIS instrument to detect radiative signatures of coronal heating is investigated. Recent observational studies of AR cores suggest that both the low and high frequency heating mechanisms are consistent with observations. Distinguishing between these possibilities is important for identifying the physical mechanism(s) of the heating. The Differential Emission Measure (DEM) tool is one diagnostic that allows to make this distinction, through the amplitude of the DEM slope coolward of the coronal peak. It is therefore crucial to understand the uncertainties associated with these measurements. Using proper estimations of the uncertainties involved in the problem of DEM inversion, we derive confidence levels on the observed DEM slope. Results show that the uncertainty in the slope reconstruction strongly depends on the number of lines constraining the slope. Typical uncertainty is estimated to be about


Advances in Space Research | 2008

Which solar EUV indices are best for reconstructing the solar EUV irradiance

T. Dudok de Wit; M. Kretzschmar; J. Aboudarham; Pierre-Olivier Amblard; F. Auchère; J. Lilensten

\pm 1.0


Astronomy and Astrophysics | 2008

The EUV Sun as the superposition of elementary Suns

Pierre-Olivier Amblard; Saïd Moussaoui; T. Dudok de Wit; J. Aboudarham; Matthieu Kretzschmar; J. Lilensten; F. Auchère

, in the more favorable cases.


Astrophysical Journal Supplement Series | 2012

ON THE ACCURACY OF THE DIFFERENTIAL EMISSION MEASURE DIAGNOSTICS OF SOLAR PLASMAS. APPLICATION TO SDO/AIA. II. MULTITHERMAL PLASMAS

C. Guennou; F. Auchère; E. Soubrié; K. Bocchialini; Susanna Parenti; N. Barbey

Abstract The solar EUV irradiance is of key importance for space weather. Most of the time, however, surrogate quantities such as EUV indices have to be used by lack of continuous and spectrally resolved measurements of the irradiance. The ability of such proxies to reproduce the irradiance from different solar atmospheric layers is usually investigated by comparing patterns of temporal correlations. We consider instead a statistical approach. The TIMED/SEE experiment, which has been continuously operating since February 2002, allows for the first time to compare in a statistical manner the EUV spectral irradiance to five EUV proxies: the sunspot number, the f10.7, Ca K, and Mg II indices, and the He I equivalent width. Using multivariate statistical methods, we represent in a single graph the measure of relatedness between these indices and various strong spectral lines. The ability of each index to reproduce the EUV irradiance is discussed; it is shown why so few lines can be effectively reconstructed from them. All indices exhibit comparable performance, apart from the sunspot number, which is the least appropriate. No single index can satisfactorily describe both the level of variability on time scales beyond 27 days, and relative changes of irradiance on shorter time scales.


The Astrophysical Journal | 2005

The Heliospheric HeII 30.4 nm Solar Flux During Cycle 23

F. Auchère; J. W. Cook; Jeffrey Scott Newmark; D.R. McMullin; R. von Steiger; M. Witte

Aims. Many studies assume that the solar irradiance in the EUV can be decomposed into different contributions, which makes modelling the spectral variability considerably easier. We consider a different approach in which these contributions are not imposed a priori but effectively and robustly inferred from spectral irradiance measurements. Methods. This is a source separation problem with a positivity constraint, for which we use a Bayesian solution. Results. Using five years of daily EUV spectra recorded by the TIMED/SEE satellite, we show that the spectral irradiance can be decomposed into three elementary spectra. Our results suggest that they describe different layers of the solar atmosphere rather than specific regions. The temporal variability of these spectra is discussed.

Collaboration


Dive into the F. Auchère's collaboration.

Top Co-Authors

Avatar

Ken Kobayashi

Marshall Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Noriyuki Narukage

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masahito Kubo

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Shin-nosuke Ishikawa

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond Mercier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ryoko Ishikawa

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge