Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Barone is active.

Publication


Featured researches published by F. Barone.


Classical and Quantum Gravity | 2010

Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors

J. Abadie; R. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; R. Adhikari; B. Allen; G. Allen; E. Amador Ceron; S. Anderson; Warren G. Anderson; F. Antonucci; S Aoudia; M. A. Arain; M. C. Araya; M. Aronsson; K G Arun; S. Aston; P. Astone; D. Atkinson; S. Babak; S. Ballmer; D. Barker; F. Barone; P. Barriga; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos

We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr−1 per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr−1 MWEG−1 to 1000 Myr−1 MWEG−1 (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO–Virgo interferometers, with a plausible range between 2 × 10−4 and 0.2 per year. The likely binary neutron–star detection rate for the Advanced LIGO–Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1990

The VIRGO Project: A wide band antenna for gravitational wave detection

C. Bradaschia; R. Del Fabbro; A. Di Virgilio; A. Giazotto; H. Kautzky; V. Montelatici; D. Passuello; A. Brillet; O. Cregut; P. Hello; C. N. Man; P. T. Manh; Alain Marraud; D. Shoemaker; J. Y. Vinet; F. Barone; L. Di Fiore; L. Milano; G. Russo; J. M. Aguirregabiria; H. Bel; J. P. Duruisseau; G. Le Denmat; P. h. Tourrenc; M. Capozzi; Maurizio Longo; M. Lops; I. Pinto; G. Rotoli; Thibault Damour

Abstract The status of advancement of the VIRGO Project is presented: the first-generation results from the Pisa seismic noise super attenuator give an upper limit to the noise transfer function of 2 × 10 −8 at 10 Hz. The upper limit to the absolute noise of the 400 kg test mass at 10 Hz has been measured to be 1.5 × 10 −13 m/√Hz. The scheme and the related problems of the VIRGO interferometer, which is supposed to work down to 10 Hz, are also presented. At the 3rd Pisa Meeting in 1986 we presented the idea of what could be a very efficient seismic noise reduction system able to give a sensitivity h ∼ 10 −25 at 10 Hz, in a 3 km interferometer for 1 year integration time. Now we have two new facts to present: the first is that the attenuation has been built, is working in Pisa, and shows remarkable characteristics. The second is the Italian-French interferometer VIRGO [1,2], a 3 km long antenna for low and high frequency (10–1000 Hz) gravitational wave (GW) detection. These two items will be presented in this article.


Classical and Quantum Gravity | 1997

The Virgo interferometer

B. Caron; A. Dominjon; C. Drezen; R. Flaminio; X. Grave; F. Marion; L. Massonnet; C. Mehmel; R. Morand; B. Mours; V. Sannibale; M. Yvert; D. Babusci; S. Bellucci; S. Candusso; G. Giordano; G. Matone; J.-M. Mackowski; L. Pinard; F. Barone; E. Calloni; L. Di Fiore; M. Flagiello; F. Garufi; A. Grado; Maurizio Longo; M. Lops; S. Marano; L. Milano; S. Solimeno

The Virgo gravitational wave detector is an interferometer with 3 km long arms in construction near Pisa to be commissioned in the year 2000. Virgo has been designed to achieve a strain sensitivity of a few times at 200 Hz. A large effort has gone into the conception of the mirror suspension system, which is expected to reduce noise to the level of at 10 Hz. The expected signals and main sources of noise are briefly discussed; the choices made are illustrated together with the present status of the experiment.


Astronomy and Astrophysics | 2012

Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts

J. Abadie; B. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; R. Adhikari; C. Affeldt; M. Agathos; P. Ajith; B. Allen; G. Allen; E. Amador Ceron; D. Amariutei; R. Amin; S. Anderson; W. G. Anderson; K. Arai; M. A. Arain; M. C. Araya; S. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. Baker

Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec. 17, 2009 to Jan. 8, 2010 and Sep. 2 to Oct. 20, 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipelines ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with similar to 50% or better probability with a few pointings of wide-field telescopes.Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipelines ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.


The Astrophysical Journal | 2010

Search for gravitational-wave bursts associated with gamma-ray bursts using data from LIGO science run 5 and VIRGO science run 1.

B. Abbott; R. Abbott; F. Acernese; R. Adhikari; P. Ajith; B. Allen; G. Allen; R. Amin; S. Anderson; W. G. Anderson; F. Antonucci; S. Aoudia; M. C. Araya; H. Armandula; P. Armor; K. G. Arun; Y. Aso; S. Aston; P. Astone; P. Aufmuth; C. Aulbert; S. Babak; P. Baker; G. Ballardin; S. Ballmer; C. Barker; D. Barker; F. Barone; B. Barr; P. Barriga

We present the results of a search for gravitational-wave bursts associated with 137 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments during the fifth LIGO science run and first Virgo science run. The data used in this analysis were collected from 2005 November 4 to 2007 October 1, and most of the GRB triggers were from the Swift satellite. The search uses a coherent network analysis method that takes into account the different locations and orientations of the interferometers at the three LIGO-Virgo sites. We find no evidence for gravitational-wave burst signals associated with this sample of GRBs. Using simulated short-duration (<1 s) waveforms, we set upper limits on the amplitude of gravitational waves associated with each GRB. We also place lower bounds on the distance to each GRB under the assumption of a fixed energy emission in gravitational waves, with typical limits of D ~ 15 Mpc (E_GW^iso / 0.01 M_o c^2)^1/2 for emission at frequencies around 150 Hz, where the LIGO-Virgo detector network has best sensitivity. We present astrophysical interpretations and implications of these results, and prospects for corresponding searches during future LIGO-Virgo runs.


Review of Scientific Instruments | 2008

Mechanical monolithic horizontal sensor for low frequency seismic noise measurement

F. Acernese; Gerardo Giordano; R. Romano; Rosario De Rosa; F. Barone

This paper describes a mechanical monolithic horizontal sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric discharge machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation makes it a very compact instrument, very sensitive in the low frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is the measured natural resonance frequency of the instrument of 70 mHz with a Q=140 in air without thermal stabilization. This result demonstrates the feasibility of a monolithic folded pendulum sensor with a natural resonance frequency of the order of millihertz with a more refined mechanical tuning.


Review of Scientific Instruments | 1995

High-performance modular digital lock-in amplifier

F. Barone; E. Calloni; Luciano DiFiore; A. Grado; Leopoldo Milano; G. Russo

In this paper we describe an efficient and robust digital implementation of a lock‐in amplifier, based on the classic quadrature technique and on a mathematical algorithm for error signal extraction. Both the hardware and the software architecture are modular. The hardware consists of a VME‐bus (IEEE 1014) standard crate, in which commercial VME boards (the CPU, the ADC and DAC) are housed. The software is written in standard C language for portability and easy integration also within complicated software architectures. The software algorithm implementing the lock‐in amplifier can be particularized by the user on the basis of the needed performances and on the available hardware. Numerical and experimental tests on a lock‐in amplifier prototype have shown that it performs as theoretically predicted. The limit of our prototype (50 kHz maximum sampling rate for 16 bit resolution) depends only on the hardware used, and it is not the present technological limit.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2008

Tunable mechanical monolithic sensor with interferometric readout for low frequency seismic noise measurement

F. Acernese; R. De Rosa; Gerardo Giordano; R. Romano; F. Barone

Abstract This paper describes a mechanical horizontal monolithic sensor developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric-discharge-machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. It is a very compact instrument, very sensitive in the low-frequency band, with a very good immunity to environmental noises, with tunable resonance frequency and integrated laser optical readout.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2000

High altitude test of RPCs for the Argo YBJ experiment

C. Bacci; K.Z. Bao; F. Barone; B. Bartoli; P. Bernardini; R. Buonomo; Severino Angelo Maria Bussino; E. Calloni; B.Y. Cao; R. Cardarelli; S. Catalanotti; A. Cavaliere; F. Cesaroni; P. Creti; M. Danzengluobu; B. D'Ettorre Piazzoli; M. De Vincenzi; T. Di Girolamo; G. Di Sciascio; Z. Y. Feng; Y. Fu; X. Y. Gao; Q.X. Geng; H.W. Guo; H. H. He; M. He; Q. Huang; M. Iacovacci; N. Iucci; H.Y. Jai

Abstract A 50 m 2 RPC carpet was operated at the YanBaJin Cosmic Ray Laboratory (Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive Air Showers was studied. Efficiency and time-resolution measurements at the pressure and temperature conditions typical of high mountain laboratories, are reported.A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory (Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive Air Showers was studied. Efficiency and time resolution measurements at the pressure and temperature conditions typical of high mountain laboratories, are reported.


Neural Networks | 2003

Neural networks in astronomy

Roberto Tagliaferri; Giuseppe Longo; Leopoldo Milano; F. Acernese; F. Barone; A. Ciaramella; Rosario De Rosa; Ciro Donalek; Antonio Eleuteri; Giancarlo Raiconi; Salvatore Sessa; Antonino Staiano; Alfredo Volpicelli

In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).

Collaboration


Dive into the F. Barone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Romano

University of Salerno

View shared research outputs
Top Co-Authors

Avatar

L. Milano

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

G. Russo

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

Leopoldo Milano

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosario De Rosa

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

R. De Rosa

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

E. Calloni

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

L. Di Fiore

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge