Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F.C.P. du Plessis is active.

Publication


Featured researches published by F.C.P. du Plessis.


Medical Physics | 1998

The indirect use of CT numbers to establish material properties needed for Monte Carlo calculation of dose distributions in patients

F.C.P. du Plessis; C. A. Willemse; M. G. Lötter; L. Goedhals

A number of Monte Carlo codes are available, which can be used to calculate dose distributions n patients with high accuracy. Patient geometry can readily be derived with adequate spatial resolution from CT scans. To perform the Monte Carlo calculation with the same spatial resolution, it is necessary to enter the atomic composition and density of the tissue in each voxel of the CT image. This means entering 65,536 discrete values for a CT slice with a 256 x 256 matrix size. The need for automated methods of setting up the material data files is obvious. Because there is no direct unique relationship between CT numbers and material composition, the aim of our work was to devise a method whereby the atomic composition and density in each voxel could be assigned automatically by indirect derivation from the CT numbers. The set of all tissues types in the human body was divided into subsets that are dosimetrically equivalent, based on Monte Carlo calculated depth dose curves in homogeneous phantoms of each tissue. CT number ranges corresponding to each tissue subset were determined from the calibration curve linking electron density with CT number for the specific CT scanner. Further subdivision was found to be necessary for the lung and bone type tissues. This was done by keeping the atomic composition constant and varying the physical density. It was found that 57 distinct tissue subsets were needed to represent the 16 main tissue types in the body at a 1% dose level. Corresponding CT number intervals of 30 HU were needed in the lung and soft tissue region, whereas in the bone region the intervals could be increased to 100 HU. A computer algorithm was set up to convert automatically from CT number to corresponding equivalent material number for the Monte Carlo preprocessor code.


Medical Physics | 2001

Comparison of the Batho, ETAR and Monte Carlo dose calculation methods in CT based patient models

F.C.P. du Plessis; C. A. Willemse; M. G. Lötter; L. Goedhals

This paper shows the contribution that Monte Carlo methods make in regard to dose distribution calculations in CT based patient models and the role it plays as a gold standard to evaluate other dose calculation algorithms. The EGS4 based BEAM code was used to construct a generic 8 MV accelerator to obtain a series of x-ray field sources. These were used in the EGS4 based DOSXYZ code to generate beam data in a mathematical water phantom to set up a beam model in a commercial treatment planning system (TPS), CADPLAN V.2.7.9. Dose distributions were calculated with the Batho and ETAR inhomogeneity correction algorithms in head/sinus, lung, and prostate patient models for 2 x 2, 5 x 5, and 10 X 10 cm2 open x-ray beams. Corresponding dose distributions were calculated with DOSXYZ that were used as a benchmark. The dose comparisons are expressed in terms of 2D isodose distributions, percentage depth dose data, and dose difference volume histograms (DDVHs). Results indicated that the Batho and ETAR methods contained inaccuracies of 20%-70% in the maxillary sinus region in the head model. Large lung inhomogeneities irradiated with small fields gave rise to absorbed dose deviations of 10%-20%. It is shown for a 10 x 10 cm2 field that DOSXYZ models lateral scatter in lung that is not present in the Batho and ETAR methods. The ETAR and Batho methods are accurate within 3% in a prostate model. We showed how the performance of these inhomogeneity correction methods can be understood in realistic patient models using validated Monte Carlo codes such as BEAM and DOSXYZ.


Medical Physics | 2003

Monte Carlo calculation of effective attenuation coefficients for various compensator materials

F.C.P. du Plessis; C. A. Willemse

Effective attenuation coefficients for 6, 8, and 15 MV photon beams were derived and studied for various compensator materials for square beams with side lengths of 0.5, 1.0, 2.0, 3.0, and 5.0 cm. Calculations were based on depth dose data in water obtained from EGS4 based DOSXYZ Monte Carlo simulations. Depth dose data were calculated using different compensator materials as attenuators of variable thickness. The absorbed dose varied exponentially as a function of absorber thickness at any depth in water on the beam axis for all materials. The effective attenuation coefficient data were compared with measurements for wax, aluminum and brass with values from the literature. Theoretical narrow beam linear attenuation coefficients were calculated and compared with the Monte Carlo data. The effective attenuation coefficient data for all materials were parametrized as functions of field size and depth in water. The effective attenuation coefficient was also parametrized as a function of atomic number. It was found that the effective attenuation coefficients calculated from the DOSXYZ data using a simple source model correspond to measured data for wax, aluminum and brass and published data for lead.


Medical Physics | 2006

Inclusion of compensator‐induced scatter and beam filtration in pencil beam dose calculations

F.C.P. du Plessis; C. A. Willemse

Compensators can be used as beam intensity modulation devices for intensity-modulated radiation therapy applications. In contrast with multileaf collimators, compensators introduce scatter and beam hardening into the therapeutic x-ray beam. The degree of scatter and beam filtering depends on the compensator material and beam energy. Pencil beam dose calculation models can be used to derive the shape of the compensator. In this study a novel way of incorporating the effect of compensator-induced scatter and beam filtration is presented. The study was conducted using 6, 8, and 15MV polyenergetic pencil beams (PBs). The compensator materials that were studied included wax, brass, copper, and lead. The perturbation effects of the compensators on the PB dose profiles were built in the PB dose profiles and tested for regular fields containing a step compensator and benchmarked against DOSXYZnrc Monte Carlo calculated dose profiles. These effects include compensator beam filtration and Compton-scattered photons generated in the compensator materials that influence the resulting PB dose profiles. These data were obtained from DOSXYZnrc simulations. A Gaussian function was used to model off-axis scatter and an exponential function was used to model beam hardening at any radius, r. Dose profiles were calculated under a step compensator using the method that can model beam hardening and off-axis scatter, as well as a conventional method where the PB profiles are not adjusted, but a single effective attenuation coefficient is used instead to best match the dose profiles. Both sets of data were compared to the DOSXYZnrc data. Depth and profile dose data for 10×10cm2 and 20×20cm2 fields indicated that at 2cm depth in water the method that takes compensator scatter into account agrees more closely with the DOSXYZnrc data compared to the data using only an effective attenuation coefficient. Further, it was found that the effective attenuation method can only replicate the DOSXYZnrc data at 10cm depth where it was chosen to do so. At shallower depths the effective attenuation method overestimates the dose and beyond 10cm depth it causes an underestimation in the dose. The scatter and beam hardening inclusion method does not exhibit such properties. The exclusion of scatter can lead to dose errors of up to 4 percent with a copper compensator at 5cm depth for a 10×10cm2 field under a thickness of 5cm at 6MV. For materials such as lead this discrepancy could be as high as 7 to 8 percent at 6MV. For larger fields (20×20cm2) the effect of in-phantom scatter reduces the differences between the dose profiles calculated with the mentioned methods.


Medical Physics | 2005

Radiological properties of a wax-gypsum compensator material

F.C.P. du Plessis; C. A. Willemse

In this paper the radiological properties of a compensator material consisting of wax and gypsum is presented. Effective attenuation coefficients (EACs) have been determined from transmission measurements with an ion chamber in a Perspex phantom. Measurements were made at 80 and 100 cm source-to-skin distance (SSD) for beam energies of 6, 8, and 15 MV, for field sizes ranging from narrow beam geometries up to 40 x 40 cm2, and at measurement depths of maximum dose build-up, 5 and 10 cm. A parametrization equation could be constructed to predict the EAC values within 4% uncertainty as a function of field size and depth of measurement. The EAC dependence on off-axis position was also quantified at each beam energy and SSD. It was found that the compensator material reduced the required thickness for compensation by 26% at 8 MV when compared to pure paraffin wax for a 10 x 10 cm2 field. Relative surface ionization (RSI) measurements have been made to quantify the effect of scattered electrons from the wax-gypsum compensator. Results indicated that for 80 cm SSD the RSI would exceed 50% for fields larger than 15 x 15 cm2. At 100 cm SSD the RSI values were below 50% for all field sizes used.


Journal of Applied Clinical Medical Physics | 2017

Dose comparison between Gafchromic film, XiO, and Monaco treatment planning systems in a novel pelvic phantom that contains a titanium hip prosthesis

Nicholas Ade; F.C.P. du Plessis

Abstract The presence of metallic prostheses during external beam radiotherapy of malignancies in the pelvic region has the potential to strongly influence the dose distribution to the target and to tissue surrounded by the prostheses. This study systematically investigates the perturbation effects of unilateral titanium prosthesis on 6 and 15 MV photon beam dose distributions using Gafchromic EBT2 film measurements in a novel pelvic phantom made out of a stack of nylon slices. Comparisons were also made between the film data and dose calculations made on XiO and Monaco treatment planning systems. The collapsed cone algorithm was chosen for the XiO and the Monte Carlo algorithm used on Monaco is XVMC. Transmission measurements were taken using a narrow‐beam geometry to determine the mass attenuation coefficient of nylon = 0.0458 cm2/g and for a water‐equivalent RW3 phantom, it was 0.0465 cm2/g. The perturbation effects of the prosthesis on dose distributions were investigated by measuring and comparing dose maps and profiles. The magnitude of dose perturbations was quantified by calculating dose enhancement and reduction factors using field sizes of 3 × 3, 5 × 5, 10 × 10, and 15 × 15 cm2. For the studied beams and field sizes, dose enhancements between 21 and 30% and dose reductions between 15 and 21% were observed at the nylon‐prosthesis interface on the proximal and distal sides of the prosthesis for film measurements. The dose escalation increases with beam energy, and the dose reduction due to attenuation decreases with increasing beam energy when compared to unattenuated beam data. A comparison of film and XiO depth doses for the studied fields gave relative errors between 1.1 and 23.2% at the proximal and distal interfaces of the Ti prosthesis. Also, relative errors < 4.0% were obtained between film and Monaco dose data outside the prosthesis for 6 and 15 MV lateral opposing fields.


Physica Medica | 2017

Measurement of the influence of titanium hip prosthesis on therapeutic electron beam dose distributions in a novel pelvic phantom

Nicholas Ade; F.C.P. du Plessis

PURPOSE To investigate the degree of 18 and 22MeV electron beam dose perturbations caused by unilateral hip titanium (Ti) prosthesis. METHODS Measurements were acquired using Gafchromic EBT2 film in a novel pelvic phantom made out of Nylon-12 slices in which a Ti-prosthesis is embedded. Dose perturbations were measured and compared using depth doses for 8×8, 10×10 and 11×11cm2 applicator-defined field sizes at 95cm source-surface-distance (SSD). Comparisons were also made between film data at 100cm SSD for a 10×10cm2 field and dose calculations made on CMS XiO treatment planning system utilizing the pencil beam algorithm. The extent of dose deviations caused by the Ti prosthesis based on film data was quantified through the dose enhancement factor (DEF), defined as the ratio of the dose influenced by the prosthesis and the unchanged beam. RESULTS At the interface between Nylon-12 and the Ti implant on the prosthesis entrance side, the dose increased to values of 21±1% and 23±1% for 18 and 22MeV electron beams, respectively. DEFs increased with increasing electron energy and field size, and were found to fall off quickly with distance from the nylon-prosthesis interface. A comparison of film and XiO depth dose data for 18 and 22MeV gave relative errors of 20% and 25%, respectively. CONCLUSION This study outlines the lack of accuracy of the XiO TPS for electron planning in highly heterogeneous media. So a dosimetric error of 20-25% could influence clinical outcome.


Physica Medica | 2018

Monte Carlo dose in a prosthesis phantom based on exact geometry vs streak artefact contaminated CT data as benchmarked against Gafchromic film measurements

Nicholas Ade; O.M. Oderinde; F.C.P. du Plessis

PURPOSE In radiotherapy, accurate calculation of patient radiation dose is very important for good clinical outcome. In the presence of metallic implants, the dose calculation accuracy could be compromised by metal artefacts generated in computed tomography (CT) images of patients. This study investigates the influence of metal-induced CT artefacts on MC dose calculations in a pelvic prosthesis phantom. METHODS A pelvic phantom containing unilateral Ti prosthesis was CT-scanned and accurate Hounsfield unit (HU) values were assigned to known materials of the phantom as opposed to HU values produced through the artefact CT images of the phantom. Using the DOSXYZnrc MC code, dose calculations were computed in the phantom model constructed from the original CT images containing the artefacts and artefact-free images made from the exact geometry of the phantom with known materials. The dose calculations were benchmarked against Gafchromic EBT3 film measurements using 15 MeV electron and 10 MV photon beams. RESULTS The average deviations between film and MC dose data decreased from 3 ± 2% to 1 ± 1% and from about 6 ± 2% to 3 ± 1% for the artefact and artefact-free phantom models against film data for the electron and photon fields, respectively. CONCLUSIONS For the Ti prosthesis phantom, the presence of metal-induced CT artefacts could cause dose inaccuracies of about 3%. Construction of an artefact-free phantom model made from the exact geometry of the phantom with known materials to overcome the effect of artefacts is advantageous compared to using CT data directly of which the exact tissue composition is not well-known.


Medical Physics | 2011

Monte carlo electron source model validation for an Elekta Precise linac.

O. A. Ali; C. A. Willemse; W. Shaw; F. H. J. O'Reilly; F.C.P. du Plessis

PURPOSE Electron radiation therapy is used frequently for the treatment of skin cancers and superficial tumors especially in the absence of kilovoltage treatment units. Head-and-neck treatment sites require accurate dose distribution calculation to minimize dose to critical structures, e.g., the eye, optic chiasm, nerves, and parotid gland. Monte Carlo simulations can be regarded as the dose calculation method of choice because it can simulate electron transport through any tissue and geometry. In order to use this technique, an accurate electron beam model should be used. METHODS In this study, a two point-source electron beam model developed for an Elekta Precise linear accelerator was validated. Monte Carlo data were benchmarked against measured water tank data for a set of regular and circular fields and at 95, 100, and 110 cm source-to-skin-distance. EDR2 Film dose distribution data were also obtained for a paranasal sinus treatment case using a Rando phantom and compared with corresponding dose distribution data obtained from Monte Carlo simulations and a CMS XiO treatment planning system. A partially shielded electron field was also evaluated using a solid water phantom and EDR2 film measurements against Monte Carlo simulations using the developed source model. RESULTS The major findings were that it could accurately replicate percentage depth dose and beam profile data for water measurements at source-to-skin-distances ranging between 95 and 110 cm over beam energies ranging from 4 to 15 MeV. This represents a stand-off between 0 and 15 cm. Most percentage depth dose and beam profile data (better than 95%) agreed within 2%/2 mm and nearly 100% of the data compared within 3%/3 mm. Calculated penumbra data were within 2 mm for the 20 x 20 cm2 field compared to water tank data at 95 cm source-to-skin-distance over the above energy range. Film data for the Rando phantom case showed gamma index map data that is similar in comparison with the treatment planning system and the Monte Carlo source model. The gamma index showed good agreement (2%/2 mm) between the Monte Carlo source model and the film data. CONCLUSIONS Percentage depth dose and beam profile data were in most cases within a tolerance of 2%/2 mm. The biggest discrepancies were in most cases recorded in the first 6 mm of the water phantom. Circular fields showed local dose agreement within 3%/3mm. Good agreement was found between calculated dose distributions for a paranasal sinus case between Monte Carlo, film measurements and a CMS XiO treatment planning system. The electron beam model can be easily implemented in the BEAMnrc or DOSXYZnrc Monte Carlo codes enabling quick calculation of electron dose distributions in complex geometries.


Radiation Physics and Chemistry | 2018

Electron beam dose perturbations caused by diode detectors used for in vivo dosimetry: Gafchromic film dose measurements in a realistic pelvic prosthesis phantom

Nicholas Ade; F.C.P. du Plessis

Collaboration


Dive into the F.C.P. du Plessis's collaboration.

Top Co-Authors

Avatar

C. A. Willemse

University of the Free State

View shared research outputs
Top Co-Authors

Avatar

Nicholas Ade

University of the Free State

View shared research outputs
Top Co-Authors

Avatar

O.M. Oderinde

University of the Free State

View shared research outputs
Top Co-Authors

Avatar

I. Setilo

University of the Free State

View shared research outputs
Top Co-Authors

Avatar

W. Shaw

University of the Free State

View shared research outputs
Top Co-Authors

Avatar

C. Mahuvava

University of the Free State

View shared research outputs
Top Co-Authors

Avatar

D. van Eeden

University of the Free State

View shared research outputs
Top Co-Authors

Avatar

E.R. Hering

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar

M. G. Lötter

University of the Free State

View shared research outputs
Top Co-Authors

Avatar

S. Mutsakanyi

University of the Free State

View shared research outputs
Researchain Logo
Decentralizing Knowledge