Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Caldefie-Chézet is active.

Publication


Featured researches published by F. Caldefie-Chézet.


Nutrition and Cancer | 2014

Leptin Induces a Proliferative Response in Breast Cancer Cells but Not in Normal Breast Cells

Virginie Dubois; Thierry Jarde; Laetitia Delort; Hermine Billard; Dominique Bernard-Gallon; Emmanuelle Berger; Alain Géloën; Marie-Paule Vasson; F. Caldefie-Chézet

Obesity is a risk factor for breast cancer in postmenopausal women. Leptin, a hormone excessively produced during obesity, is suggested to be involved in breast cancer. The aim of the study was to investigate procarcinogenic potential of leptin by evaluating influence of leptin on cell proliferation, cell cycle, apoptosis, and signaling on numerous breast cells lines, including 184B5 normal cells, MCF10A fibrocystic cells and MCF-7, MDA-MB-231, and T47D cancer cells. Expressions of leptin and Ob-R were analyzed using qRT-PCR and immunohistochemistry, proliferation using fluorimetric resazurin reduction test and xCELLigence system, apoptosis and cell cycle by flow cytometry, and effect of leptin on different signalling pathways using qRT-PCR and Western blot. Cells were exposed to increasing concentrations of leptin. All cell lines expressed mRNA and protein of leptin and Ob-R. Leptin stimulated proliferation of all cell lines except for 184B5 and MDA-MB-231 cells. Leptin inhibited apoptosis but didnt alter proportion of cells within cell cycle in MCF7 cells. Leptin induced overexpression of leptin, Ob-R, estrogen receptor, and aromatase mRNA in MCF-7 and T47D cells. Autoregulation induced by leptin, relationship with estrogen pathway, and proliferative and antiapoptic activity in breast cancer cells may explain that obesity-associated hyperleptinemia may be a breast cancer risk factor.


PLOS ONE | 2012

Effects of Enriched Environment on COX-2, Leptin and Eicosanoids in a Mouse Model of Breast Cancer

Rachida Nachat-Kappes; Alexandre Pinel; Kristell Combe; Bruno Lamas; Marie-Chantal Farges; Adrien Rossary; Nicolas Goncalves-Mendes; F. Caldefie-Chézet; Marie-Paule Vasson; Samar Basu

Cyclooxygenase-2 (COX-2) and adipokines have been implicated in breast cancer. This study investigated a possible link between COX-2 and adipokines in the development of mammary tumors. A model of environmental enrichment (EE), known to reduce tumor growth was used for a syngeneic murine model of mammary carcinoma. 3-week-old, female C57BL/6 mice were housed in standard environment (SE) or EE cages for 9 weeks and transplanted orthotopically with syngeneic EO771 adenocarcinoma cells into the right inguinal mammary fat pad. EE housing influenced mammary gland development with a decrease in COX-2 expressing cells and enhanced side-branching and advanced development of alveolar structures of the mammary gland. Tumor volume and weight were decreased in EE housed mice and were associated with a reduction in COX-2 and Ki67 levels, and an increase in caspase-3 levels. In tumors of SE mice, high COX-2 expression correlated with enhanced leptin detection. Non-tumor-bearing EE mice showed a significant increase in adiponectin levels but no change in those of leptin, F2-isoprostanes, PGF2α, IL-6, TNF-α, PAI-1, and MCP-1 levels. Both tumor-bearing groups (SE and EE housing) had increased resistin, IL-6, TNF-α, PAI-1 and MCP-1 levels irrespective of the different housing environment demonstrating higher inflammatory response due to the presence of the tumor. This study demonstrates that EE housing influenced normal mammary gland development and inhibited mammary tumor growth resulting in a marked decrease in intratumoral COX-2 activity and an increase in the plasma ratio of adiponectin/leptin levels.


Life Sciences | 2015

Leptin, adipocytes and breast cancer: Focus on inflammation and anti-tumor immunity

Laetitia Delort; Adrien Rossary; Marie-Chantal Farges; Marie-Paule Vasson; F. Caldefie-Chézet

More than one million new cases of breast cancer are diagnosed worldwide each year and more than 400,000 deaths are caused by the disease. The origin of this pathology is multifactorial and involved genetic, hormonal, environmental and nutritional factors including obesity in postmenopausal women. The role played by the adipose tissue and their secretions, ie adipokines, is beginning to be recognized. Plasma adipokine levels, which are modulated during obesity, could have “remote” effects on mammary carcinogenesis. Breast cancer cells are surrounded and locally influenced by an adipocyte microenvironment, which is probably more extensive in obese people. Hence, leptin appears to be strongly involved in mammary carcinogenesis and may contribute to the local pro-inflammatory mechanisms, especially in obese patients, who have increased metastatic potential and greater risk of mortality. This review presents the multifaceted role of leptin in breast cancer development and the different molecular pathways involved such as inflammation, oxidative stress and antitumor immunity.


PLOS ONE | 2013

Breast Cancer and Obesity: In Vitro Interferences between Adipokines and Proangiogenic Features and/or Antitumor Therapies?

Virginie Dubois; Laetitia Delort; Hermine Billard; Marie-Paule Vasson; F. Caldefie-Chézet

Obesity is now considered as a risk factor for breast cancer in postmenopausal women. Adipokine levels are modulated in obesity, and may play a role in carcinogenesis. Moreover, obesity increases risk of cancer mortality. Here, we hypothesized that this increase could be due to a modification in angiogenesis, capital event in the development of metastases, and/or in effectiveness of cancer treatments. To test these assumptions, following a same experimental design and simultaneously the effects of leptin and adiponectin on angiogenesis were investigated, and the impact of hyperleptinemia on anticancer drug effectiveness was measured in physiological and obesity situations. Focusing on angiogenesis, the proliferation of endothelial cells (HUVEC), which expressed leptin and adiponectin receptors, was stimulated by leptin and inhibited by adiponectin. Both adipokines globally reduced apoptosis and caspase activity. Leptin increased migration whereas adiponectin decreased migration, and leptin enhanced the area of the tubes formed by HUVEC cells while adiponectin inhibited their formation. MCF7 and MDA-MB-231 cells treated with leptin secreted more VEGF than untreated cells, whereas adiponectin treatment inhibited VEGF secretion. Finally, MCF7 cells pre-treated with leptin were more invasive than untreated cells. This effect was not reproduced in MDA-MB-231 cells. In the MCF7 breast cancer cell line, leptin could induce cell proliferation and reduced the efficacy of all breast cancer therapies (tamoxifen, 5-fluorouracil, taxol and vinblastin). These results suggest that, in obesity situation, leptin– in contrast to adiponectin – may promote tumor invasion and angiogenesis, leading to metastases ‘apparition, and reduce treatment efficacy, which could explain the increased risk of cancer mortality in cases of overweight. The evidence suggests adipokines influence breast cancer issue and could play a significant role, especially in obese patients for which hyperleptinemia, hypoadiponectinemia and increased metastatic potential are described.


PLOS ONE | 2013

Reciprocal Interactions between Breast Tumor and Its Adipose Microenvironment Based on a 3D Adipose Equivalent Model

Laetitia Delort; Charlotte Lequeux; Virginie Dubois; Alice Dubouloz; Hermine Billard; Ali Mojallal; Odile Damour; Marie-Paule Vasson; F. Caldefie-Chézet

Breast cancer has become the most common cancer among women in industrialized countries. Obesity is well established as a risk factor, in particular owing to the attendant secretion of the entities called adipokines; there is growing evidence for a role of cells and factors present in the mammary tumor microenvironment such as fibroblasts, preadipocytes, adipocytes and their secretions. To study how the microenvironment influences breast cancer growth, we developed a novel tridimensional adipose model epithelialized with normal human keratinocytes or with breast cancer cell lines. These mimicked a breast tumor in contact with an adipose microenvironment and allowed monitoring of the interactions between the cells. Leptin and adiponectin, two major adipokines, and their respective receptors, ObRt and AdipoR1, were expressed in the model, but not the second adiponectin receptor, AdipoR2. The differentiation of preadipocytes into adipocytes was greater when they were in contact with the breast cancer cell lines. The contact of breast cancer cell lines with the microenvironment completely modified their transcriptional programs by increasing the expression of genes involved in cell proliferation (cyclinD1, MAPK), angiogenesis (MMP9, VEGF) and hormonal pathways (ESR1, IL6). This tridimensional adipose model provides new insights into the interactions between breast cancer cells and their adipose microenvironment, and provides a tool to develop new drugs for the treatment of both cancer and obesity.


Journal of Cellular Physiology | 2013

Leptin modulates dose-dependently the metabolic and cytolytic activities of NK-92 cells.

Bruno Lamas; Nicolas Goncalves-Mendes; Rachida Nachat-Kappes; Adrien Rossary; F. Caldefie-Chézet; Marie-Paule Vasson; Marie-Chantal Farges

Leptin, a hormone‐cytokine produced primarily in the adipose tissue, has pleiotropic effects on many biological systems and in several cell types, including immune cells. Hyperleptinemia is associated with immune dysfunction and carcinogenesis. Natural killer (NK) cells are critical mediators of anti‐tumor immunity, and leptin receptor deficiency in mice leads to impaired NK function. It was thus decided to explore the in vitro effects of leptin on human NK cell function. NK‐92 cells were cultured during 48u2009h with different leptin concentrations [absence, 10 (physiological), 100 (obesity), or 200u2009ng/ml (pharmacology)]. Their metabolic activity was assessed using the resazurin test. NK‐92 cell cytotoxicity and intracellular IFN‐γ production were analyzed by flow cytometry. NK‐92 cell mRNA and protein expression levels of cytotoxic effectors were determined by RT‐qPCR and Western blot. In our conditions, leptin exerted a dose‐dependent stimulatory effect on NK‐92 cell metabolic activity. In addition, high leptin concentrations enhanced NK‐92 cell cytotoxicity against K562‐EGFP and MDA‐MB‐231‐EGFP target cells and inversely reduced cytotoxicity against the MCF‐7‐EGFP target. At 100u2009ng/ml, leptin up‐regulated both NK cell granzyme B and TRAIL protein expressions and concomitantly down‐regulated perforin expression without affecting Fas‐L expression. In response to PMA/ionomycin stimulation, the proportion of IFN‐γ expressing NK‐92 cells increased with 100 and 200u2009ng/ml of leptin. In conclusion, leptin concentration, at obesity level, variably increased NK‐92 cell metabolic activity and modulated NK cell cytotoxicity according to the target cells. The underlying mechanisms are partly due to an up‐regulation of TRAIL and IFN‐γ expression and a down‐regulation of perforin. J. Cell. Physiol. 228: 1202–1209, 2013.


Vitamins and Hormones Series | 2012

New insights into anticarcinogenic properties of adiponectin: a potential therapeutic approach in breast cancer?

Laetitia Delort; Thierry Jardé; Virginie Dubois; Marie-Paule Vasson; F. Caldefie-Chézet

Obesity is a recognized breast cancer risk factor in postmenopausal women. A recent hypothesis suggests a major role for adipose tissue in carcinogenesis. During many years, the adipose tissue was only considered as a fat storage of energy. This tissue is now described as an endocrine organ secreting a large range of molecules called adipokines. Among these adipokines, adiponectin may play a major role in breast cancer. Plasma adiponectin levels were found to be decreased in cases of breast cancer and in obese patients. Adiponectin may act directly on breast cancer cells by inhibiting proliferation and angiogenesis or by stimulating apoptosis. Increasing adiponectin levels may be of major importance in the prevention and/or the treatment of breast cancer. This therapeutic approach may be of particular significance for obese patients. The beneficial effects of adiponectin and its possible therapeutic applications will be discussed in this review.


Journal of Cellular Physiology | 2017

Supernatants of Adipocytes From Obese Versus Normal Weight Women and Breast Cancer Cells: In Vitro Impact on Angiogenesis.

L. Bougaret; Laetitia Delort; Hermine Billard; Charlotte Lequeux; Nicolas Goncalves-Mendes; Ali Mojallal; Odile Damour; Marie-Paule Vasson; F. Caldefie-Chézet

Breast cancer is correlated with a higher risk of metastasis in obese postmenopausal women. Adipokines, whose plasma concentrations are modulated in obese subjects and adipocytes surround mammary cells, suggesting that adipocyte secretome affect mammary tumorogenesis. We hypothesize that mature adipocyte secretions from obese women conditioned or not by breast neoplasic cells, increase changes on the angiogenesis stages. Supernatants of human mature adipocytes, differentiated from stem cells of either adipose tissue of normal weight (MA20) or obese (MA30) women or obtained from co‐cultures between MA20 and MA30 and breast cancer cell line MCF‐7, were collected. The impact of these supernatants was investigated on proliferation, migration, and tube formation by endothelial cells (HUVEC). MA20 and MA30 showed a preservation of their “metabolic memory” (increase of Leptin, ObR, VEGF, CYP19A1, and a decrease of Adiponectin expression in MA30 compared to MA20). Supernatants from obese‐adipocytes increased HUVEC proliferation, migration, and sprouting like with supernatants obtained from co‐cultures of MA/MCF‐7 regardless the womens BMI. Additional analyses such as the use of neutralizing antibodies, analysis of supernatants (Milliplex®) and variations in gene expression (qRT‐PCR), strongly suggest an implication of IL‐6, or a synergistic action among adipokines, probably associated with that of VEGF or IL‐6. As a conclusion, supernatants from co‐cultures of MA30 and MCF‐7 cells increase proliferation, migration, and sprouting of HUVEC cells. These results provide insights into the interaction between adipocytes and epithelial cancer cells, particularly in case of obesity. The identification of synergistic action of adipokines would therefore be a great interest in developing preventive strategies. J. Cell. Physiol. 232: 1808–1816, 2017.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2016

Inflammatory F2-isoprostane, prostaglandin F2α, pentraxin 3 levels and breast cancer risk: The Swedish Mammography Cohort

Samar Basu; Holly R. Harris; Alicja Wolk; Adrien Rossary; F. Caldefie-Chézet; Marie-Paule Vasson; Anders Larsson

INTRODUCTIONnBreast cancer is a common cancer among women. Identifying cellular participation of F2-isoprostane, prostaglandin F2α (PGF2α) and pentraxin 3 (PTX3) in cancer we evaluated whether their prediagnostic systemic levels that originate from different inflammatory pathways were associated with breast cancer risk.nnnMETHODSnSeventy-eight breast cancer cases diagnosed after blood collection and 797 controls from the Swedish Mammography Cohort were analysed for urinary F2-isoprostane, PGF2α and plasma PTX3 levels.nnnRESULTSnNone of the biomarkers investigated were significantly associated with breast cancer risk. However, there was the suggestion of an inverse association with PTX3 with multivariable adjusted ORs (95% CI) of 0.56 (95% CI=0.29-1.06) and 0.67 (95% CI=0.35-1.28) for the second and third tertiles, respectively (ptrend=0.20). No associations were observed between F2-isoprostane (OR=0.87; 95% CI=0.48-1.57; ptrend=0.67) and PGF2α metabolite (OR=1.03; 95% CI=0.56-1.88; ptrend=0.91) comparing the top to bottom tertiles.nnnCONCLUSIONSnThe systemic levels of F2-isoprostane, PGF2α and PTX3 witnessed in women who later developed breast cancer may not provide prognostic information regarding tumor development in spite of their known involvement in situ cellular context. These observations may indicate that other mechanisms exist in controlling cellular formation of F2-isoprostane, PGF2α and PTX3 and their systemic availability in breast cancer patients.


Journal of Cellular Physiology | 2017

Enhancement of Lytic Activity by Leptin Is Independent From Lipid Rafts in Murine Primary Splenocytes

Aurore Collin; Audrey Noacco; Jérémie Talvas; F. Caldefie-Chézet; Marie-Paule Vasson; Marie-Chantal Farges

Leptin, a pleiotropic adipokine, is known as a regulator of food intake, but it is also involved in inflammation, immunity, cell proliferation, and survival. Leptin receptor is integrated inside cholesterol‐rich microdomains called lipid rafts, which, if disrupted or destroyed, could lead to a perturbation of lytic mechanism. Previous studies also reported that leptin could induce membrane remodeling. In this context, we studied the effect of membrane remodeling in lytic activity modulation induced by leptin. Thus, primary mouse splenocytes were incubated with methyl‐β‐cyclodextrin (β‐MCD), a lipid rafts disrupting agent, cholesterol, a major component of cell membranes, or ursodeoxycholic acid (UDCA), a membrane stabilizer agent for 1u2009h. These treatments were followed by splenocyte incubation with leptin (absence, 10 and 100u2009ng/ml). Unlike β‐MCD or cholesterol, UDCA was able to block leptin lytic induction. This result suggests that leptin increased the lytic activity of primary spleen cells against syngenic EO771 mammary cancer cells independently from lipid rafts but may involve membrane fluidity. Furthermore, natural killer cells were shown to be involved in the splenocyte lytic activity. To our knowledge it is the first publication in primary culture that provides the link between leptin lytic modulation and membrane remodeling. J. Cell. Physiol. 232: 101–109, 2017.

Collaboration


Dive into the F. Caldefie-Chézet's collaboration.

Top Co-Authors

Avatar

Marie-Paule Vasson

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laetitia Delort

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Hermine Billard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie-Chantal Farges

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Adrien Rossary

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

L. Bougaret

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Virginie Dubois

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nicolas Goncalves-Mendes

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Bruno Lamas

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge