Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Camilo is active.

Publication


Featured researches published by F. Camilo.


Science | 2004

A double-pulsar system: A rare laboratory for relativistic gravity and plasma physics

A. G. Lyne; M. Burgay; M. Kramer; Andrea Possenti; R. N. Manchester; F. Camilo; M. A. McLaughlin; D. R. Lorimer; N. D'Amico; B. C. Joshi; John H. Reynolds; P. C. C. Freire

The clocklike properties of pulsars moving in the gravitational fields of their unseen neutron-star companions have allowed unique tests of general relativity and provided evidence for gravitational radiation. We report here the detection of the 2.8-second pulsar J0737–3039B as the companion to the 23-millisecond pulsar J0737–3039A in a highly relativistic double neutron star system, allowing unprecedented tests of fundamental gravitational physics. We observed a short eclipse of J0737–3039A by J0737–3039B and orbital modulation of the flux density and the pulse shape of J0737–3039B, probably because of the influence of J0737–3039As energy flux on its magnetosphere. These effects will allow us to probe magneto-ionic properties of a pulsar magnetosphere.


Nature | 2003

An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system.

M. Burgay; N. D'Amico; A. Possenti; R. N. Manchester; A. G. Lyne; B. C. Joshi; M. A. McLaughlin; M. Kramer; J. Sarkissian; F. Camilo; V. Kalogera; C. Kim; D. R. Lorimer

The merger of close binary systems containing two neutron stars should produce a burst of gravitational waves, as predicted by the theory of general relativity. A reliable estimate of the double-neutron-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors will be successful in detecting such bursts. Present estimates of this rate are rather low, because we know of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we report the discovery of a 22-ms pulsar, PSR J0737–3039, which is a member of a highly relativistic double-neutron-star binary with an orbital period of 2.4 hours. This system will merge in about 85 Myr, a time much shorter than for any other known neutron-star binary. Together with the relatively low radio luminosity of PSR J0737–3039, this timescale implies an order-of-magnitude increase in the predicted merger rate for double-neutron-star systems in our Galaxy (and in the rest of the Universe).


Science | 2006

Tests of general relativity from timing the double pulsar

M. Kramer; I. H. Stairs; R. N. Manchester; M. A. McLaughlin; A. G. Lyne; R. D. Ferdman; M. Burgay; D. R. Lorimer; Andrea Possenti; N. D'Amico; J. Sarkissian; G. Hobbs; J. E. Reynolds; P. C. C. Freire; F. Camilo

The double pulsar system PSR J0737-3039A/B is unique in that both neutron stars are detectable as radio pulsars. They are also known to have much higher mean orbital velocities and accelerations than those of other binary pulsars. The system is therefore a good candidate for testing Einsteins theory of general relativity and alternative theories of gravity in the strong-field regime. We report on precision timing observations taken over the 2.5 years since its discovery and present four independent strong-field tests of general relativity. These tests use the theory-independent mass ratio of the two stars. By measuring relativistic corrections to the Keplerian description of the orbital motion, we find that the “post-Keplerian” parameter s agrees with the value predicted by general relativity within an uncertainty of 0.05%, the most precise test yet obtained. We also show that the transverse velocity of the systems center of mass is extremely small. Combined with the systems location near the Sun, this result suggests that future tests of gravitational theories with the double pulsar will supersede the best current solar system tests. It also implies that the second-born pulsar may not have formed through the core collapse of a helium star, as is usually assumed.


Monthly Notices of the Royal Astronomical Society | 2001

The Parkes multi-beam pulsar survey - I. Observing and data analysis systems, discovery and timing of 100 pulsars

R. N. Manchester; A. G. Lyne; F. Camilo; J. F. Bell; Victoria M. Kaspi; N. D'Amico; N. P. F. McKay; F. Crawford; I. H. Stairs; A. Possenti; M. Kramer; D.C. Sheppard

limiting flux density of the survey is about 0.2 mJy. At shorter or longer periods or higher dispersions, the sensitivity is reduced. Timing observations are carried out for pulsars discovered in the survey for 12‐18 months after confirmation to obtain accurate positions, spin parameters, dispersion measures, pulse shapes and mean flux densities. The survey is proving to be extremely successful, with more than 600 pulsars discovered so far. We expect that, when complete, this one survey will come close to finding as many pulsars as all previous pulsar surveys put together. The newly discovered pulsars tend to be young, distant and of high radio luminosity. They will form a valuable sample for studies of pulsar emission properties, the Galactic distribution and evolution of pulsars, and as probes of interstellar medium properties. This paper reports the timing and pulse shape parameters for the first 100 pulsars timed at Parkes, including three pulsars with periods of less than 100 ms which are members of binary systems. These results are briefly compared with the parameters of the previously known population.


Nature | 2006

Transient radio bursts from rotating neutron stars

M. A. McLaughlin; A. G. Lyne; D. R. Lorimer; M. Kramer; A. J. Faulkner; R. N. Manchester; J. M. Cordes; F. Camilo; A. Possenti; I. H. Stairs; G. Hobbs; Nichi DAmico; M. Burgay; John T. O'Brien

The radio sky is relatively unexplored for transient signals, although the potential of radio-transient searches is high. This was demonstrated recently by the discovery of a previously unknown type of source, varying on timescales of minutes to hours. Here we report a search for radio sources that vary on much shorter timescales. We found eleven objects characterized by single, dispersed bursts having durations between 2 and 30 ms. The average time intervals between bursts range from 4 min to 3 h with radio emission typically detectable for <1 s per day. From an analysis of the burst arrival times, we have identified periodicities in the range 0.4–7 s for ten of the eleven sources, suggesting origins in rotating neutron stars. Despite the small number of sources detected at present, their ephemeral nature implies a total Galactic population significantly exceeding that of the regularly pulsing radio pulsars. Five of the ten sources have periods >4 s, and the rate of change of the pulse period has been measured for three of them; for one source, we have inferred a high magnetic field strength of 5 × 1013 G. This suggests that the new population is related to other classes of isolated neutron stars observed at X-ray and γ-ray wavelengths.


Science | 2006

A Radio Pulsar Spinning at 716 Hz

Jason William Thomas Hessels; Scott M. Ransom; I. H. Stairs; P. C. C. Freire; Victoria M. Kaspi; F. Camilo

We have discovered a 716-hertz eclipsing binary radio pulsar in the globular cluster Terzan 5 using the Green Bank Telescope. It is the fastest spinning neutron star found to date, breaking the 24-year record held by the 642-hertz pulsar B1937+21. The difficulty in detecting this pulsar, because of its very low flux density and high eclipse fraction (∼40% of the orbit), suggests that even faster spinning neutron stars exist. If the pulsar has a mass less than twice the mass of the Sun, then its radius must be constrained by the spin rate to be <16 kilometers. The short period of this pulsar also constrains models that suggest that gravitational radiation, through an r-mode (Rossby wave) instability, limits the maximum spin frequency of neutron stars.


Monthly Notices of the Royal Astronomical Society | 2006

The Parkes Multibeam Pulsar Survey - VI. Discovery and timing of 142 pulsars and a Galactic population analysis

D. R. Lorimer; A. J. Faulkner; A. G. Lyne; R. N. Manchester; M. Kramer; M. A. McLaughlin; G. Hobbs; Andrea Possenti; I. H. Stairs; F. Camilo; M. Burgay; N. D'Amico; A. Corongiu; F. Crawford

We present the discovery and follow-up observations of 142 pulsars found in the Parkes 20-cm multibeam pulsar survey of the Galactic plane. These new discoveries bring the total number of pulsars found by the survey to 742. In addition to tabulating spin and astrometric parameters, along with pulse width and flux density information, we present orbital characteristics for 13 binary pulsars which form part of the new sample. Combining these results from another recent Parkes multibeam survey at high Galactic latitudes, we have a sample of 1008 normal pulsars which we use to carry out a determination of their Galactic distribution and birth rate. We infer a total Galactic population of 30 000 ± 1100 potentially detectable pulsars (i.e. those beaming towards us) having 1.4-GHz luminosities above 0.1 mJy kpc 2 . Adopting the Tauris & Manchester beaming model, this translates to a total of 155 000 ± 6000 active radio pulsars in the Galaxy above this luminosity limit. Using a pulsar current analysis, we derive the birth rate of this population to be 1.4 ± 0.2 pulsars per century. An important conclusion from our work is that the inferred radial density function of pulsars depends strongly on the assumed distribution of free electrons in the Galaxy. As a result, any analyses using the most recent electron model of Cordes & Lazio predict a dearth of pulsars in the inner Galaxy. We show that this model can also bias the inferred pulsar scaleheight with respect to the Galactic plane. Combining our results with other Parkes multibeam surveys we find that the population is best described by an exponential distribution with a scaleheight of 330 pc. Surveys underway at Parkes and Arecibo are expected to improve the knowledge of the radial distribution outside the solar circle, and to discover several hundred new pulsars in the inner Galaxy.


Nature | 2006

Transient pulsed radio emission from a magnetar

F. Camilo; Scott M. Ransom; Jules P. Halpern; John H. Reynolds; D. J. Helfand; Neil Zimmerman; John M. Sarkissian

Anomalous X-ray pulsars (AXPs) are slowly rotating neutron stars with very bright and highly variable X-ray emission that are believed to be powered by ultra-strong magnetic fields of >1014 G, according to the ‘magnetar’ model. The radio pulsations that have been observed from more than 1,700 neutron stars with weaker magnetic fields have never been detected from any of the dozen known magnetars. The X-ray pulsar XTE J1810 - 197 was revealed (in 2003) as the first AXP with transient emission when its luminosity increased 100-fold from the quiescent level; a coincident radio source of unknown origin was detected one year later. Here we show that XTE J1810 - 197 emits bright, narrow, highly linearly polarized radio pulses, observed at every rotation, thereby establishing that magnetars can be radio pulsars. There is no evidence of radio emission before the 2003 X-ray outburst (unlike ordinary pulsars, which emit radio pulses all the time), and the flux varies from day to day. The flux at all radio frequencies is approximately equal—and at >20 GHz XTE J1810 - 197 is currently the brightest neutron star known. These observations link magnetars to ordinary radio pulsars, rule out alternative accretion models for AXPs, and provide a new window into the coronae of magnetars.


Nature | 2016

A repeating fast radio burst

L. G. Spitler; P. Scholz; J. W. T. Hessels; S. Bogdanov; A. Brazier; F. Camilo; Shami Chatterjee; J. M. Cordes; F. Crawford; J. S. Deneva; R. D. Ferdman; P. C. C. Freire; Victoria M. Kaspi; P. Lazarus; R. Lynch; E. Madsen; M. A. McLaughlin; C. Patel; Scott M. Ransom; A. Seymour; I. H. Stairs; B. W. Stappers; J. van Leeuwen; Weiwei Zhu

Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.


The Astrophysical Journal | 2014

Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey

L. G. Spitler; J. M. Cordes; J. W. T. Hessels; D. R. Lorimer; M. A. McLaughlin; S. Chatterjee; F. Crawford; J. S. Deneva; Victoria M. Kaspi; R. S. Wharton; B. Allen; S. Bogdanov; A. Brazier; F. Camilo; P. C. C. Freire; F. A. Jenet; C. Karako-Argaman; B. Knispel; P. Lazarus; K. J. Lee; J. van Leeuwen; Ryan S. Lynch; Scott M. Ransom; P. Scholz; X. Siemens; I. H. Stairs; K. Stovall; J. K. Swiggum; A. Venkataraman; W. W. Zhu

Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities for probing the intergalactic medium; they may also be linked to new source classes. Until now, however, all so-called fast radio bursts (FRBs) have been detected with the Parkes radio telescope and its 13-beam receiver, casting some concern about the astrophysical nature of these signals. Here we present FRB 121102, the first FRB discovery from a geographic location other than Parkes. FRB 121102 was found in the Galactic anti-center region in the 1.4?GHz Pulsar Arecibo L-band Feed Array (ALFA) survey with the Arecibo Observatory with a DM = 557.4 ? 2.0 pc cm?3, pulse width of 3.0 ? 0.5 ms, and no evidence of interstellar scattering. The observed delay of the signal arrival time with frequency agrees precisely with the expectation of dispersion through an ionized medium. Despite its low Galactic latitude (b = ?0.?2), the burst has three times the maximum Galactic DM expected along this particular line of sight, suggesting an extragalactic origin. A peculiar aspect of the signal is an inverted spectrum; we interpret this as a consequence of being detected in a sidelobe of the ALFA receiver. FRB 121102s brightness, duration, and the inferred event rate are all consistent with the properties of the previously detected Parkes bursts.

Collaboration


Dive into the F. Camilo's collaboration.

Top Co-Authors

Avatar

A. G. Lyne

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

R. N. Manchester

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. A. McLaughlin

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar

I. H. Stairs

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Scott M. Ransom

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar

D. R. Lorimer

West Virginia University

View shared research outputs
Top Co-Authors

Avatar

M. Burgay

University of Bologna

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge