Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Crescenzi is active.

Publication


Featured researches published by F. Crescenzi.


ieee symposium on fusion engineering | 2013

Assessment of an ITER-like water-cooled divertor for DEMO

Eliseo Visca; F. Crescenzi; A. Moriani; A. Li Puma; M. Richou; S. Roccella

This paper presents main outcomes of activities, performed in the frame of the EFDA task WP12-DAS-02-T02 and whose main objective was to investigate the feasibility and the range of applicability of a water-cooled divertor (WCD) based on technology developed for ITER to DEMO1. That includes the analysis of the power handling limits, the impact of the end-of-life irradiation fluence, as well as the assessment of available material properties. The considered divertor configuration is a water-cooled monoblock divertor which should be suitable for DEMO operation. For this purpose also Copper alloys, with their high thermal conductivities and relative high strengths, have to be considered when high heat flux handling is required but the aspect of n-irradiation cannot be neglected. All these aspects are assessed for two heat sink materials possible candidates: CuCrZr-IG, EUROFER. For these materials the psychical and mechanical properties were investigated considering their behaviour under n-irradiation and focusing the attention on the conceivable DEMO operational window with respect to temperatures and n-irradiation material properties degradation. The work is then concluded with thermo-mechanical studies of appropriate FE models to predict the heat flux performance capability and lifetime of a W mono-block with cooling pipes made of different Cu-alloys and EUROFER.


ieee/npss symposium on fusion engineering | 2011

Advances in the FAST program

A. Cucchiaro; G. Brolatti; G. Calabrò; V. Cocilovo; P. Frosi; F. Crescenzi; F. Crisanti; G. Maddaluno; V. Pericoli-Ridolfini; A. Pizzuto; C. Rita; G. Ramogida; S. Roccella; P. Rossi

FAST (Fusion Advanced Studies Torus) is a proposal for a Satellite Facility which can contribute the rapid exploitation of ITER and prepare ITER and DEMO regimes of operation, as well as exploiting innovative DEMO technology. FAST operates with high performance H-Mode (BT up to 8.5 T; IP up to 8 MA) as well as Advanced Tokamak operation (IP=3 MA), and full non inductive current scenario (IP=2 MA) [1]. The project is based on a dominant 30 MW of ICRH, 6 MW of LH and 4 MW of ECRH.


ieee/npss symposium on fusion engineering | 2009

FAST Load Assembly conceptual design

A. Cucchiaro; G. Brolatti; G. Calabrò; V. Cocilovo; A. Coletti; R. Coletti; P. Costa; P. Frosi; F. Crescenzi; F. Crisanti; G. Granucci; G. Maddaluno; V. Pericoli-Ridolfini; A. Pizzuto; C. Rita; G. Ramogida; S. Roccella; P. Rossi

FAST (Fusion Advanced Studies Torus) is a proposal for a Satellite Facility which can contribute the rapid exploitation of ITER and prepare ITER and DEMO regimes of operation, as well as exploiting innovative DEMO technology. FAST is a compact (Ro = 1.82 m, a = 0.64 m, triangularity δ = 0.4) machine able to investigate non linear dynamics effects of alpha particle behaviours in burning plasmas [1][ [2][5]. The project is based on a dominant 30 MW of ICRH, 6 MW of LH and 4 MW of ECRH. FAST operates at a wide range [3][4] of parameters e.g., in high performance H-Mode (BT up to 8.5 T; IP up to 8 MA) as well as in Advanced Tokamak operation (IP=3 MA), and full non inductive current scenario (IP=2 MA). Helium gas at 30 K is used for cooling the resistive copper magnets [6]. That allows for a pulse duration up to 170 s. Tungsten (W) or Liquid Lithium (L-Li) have been chosen as the divertor plates material, and Argon or Neon as the injected impurities to mitigate the thermal loads.


Fusion Engineering and Design | 2011

FAST: A European ITER satellite experiment in the view of DEMO

F. Crisanti; A. Cucchiaro; R. Albanese; G. Artaserse; M. Baruzzo; T. Bolzonella; G. Brolatti; G. Calabrò; F. Crescenzi; R. Coletti; P. Costa; A. della Corte; A. Di Zenobio; P. Frosi; D. Harting; L. Lauro Taroni; G. Maddaluno; D. Marcuzzi; F. Maviglia; L. Muzzi; V. Pericoli-Ridolfini; A. Pizzuto; G.M. Polli; G. Ramogida; L. Reccia; V. Rigato; C. Rita; S. Roccella; M. Santinelli; P. Sonato


Fusion Engineering and Design | 2015

Design study of ITER-like divertor target for DEMO

F. Crescenzi; C. Bachmann; M. Richou; S. Roccella; E. Visca; J.-H. You


Fusion Engineering and Design | 2010

Conceptual design of the FAST load assembly

A. Cucchiaro; R. Albanese; G. Ambrosino; G. Brolatti; G. Calabrò; V. Cocilovo; A. Coletti; R. Coletti; P. Costa; P. Frosi; F. Crescenzi; F. Crisanti; G. Granucci; G. Maddaluno; V. Pericoli-Ridolfini; A. Pizzuto; C. Rita; G. Ramogida


Fusion Engineering and Design | 2011

Mechanical characterization of glass fibre–epoxy composite material for ITER pre-compression rings

F. Crescenzi; Fabrizio Marini; C. Nardi; A. Pizzuto; Paolo Rossi; Luigi Verdini; H. Rajainmaki; J. Knaster; Livio Bettinali


Fusion Engineering and Design | 2014

Comparison between FEM and high heat flux thermal fatigue testing results of ITER divertor plasma facing mock-ups

F. Crescenzi; S. Roccella; Eliseo Visca; A. Moriani


Fusion Engineering and Design | 2011

Engineering evolution of the FAST machine

A. Cucchiaro; G. Brolatti; G. Calabrò; V. Cocilovo; P. Frosi; F. Crescenzi; F. Crisanti; G. Maddaluno; V. Pericoli-Ridolfini; A. Pizzuto; C. Rita; G. Ramogida; S. Roccella; Paolo Rossi


Fusion Engineering and Design | 2013

Vessel and In-Vessel Components Design Upgrade of the FAST machine

F. Crescenzi; S. Roccella; G. Brolatti; Lei Cao; F. Crisanti; A. Cucchiaro; G. Di Gironimo; C. Labate; F. Lucca; G. Maddaluno; G. Ramogida; F. Renno

Collaboration


Dive into the F. Crescenzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Reiser

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Roccella

European Atomic Energy Community

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge