Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. D'Antona is active.

Publication


Featured researches published by F. D'Antona.


Monthly Notices of the Royal Astronomical Society | 2008

Formation and dynamical evolution of multiple stellar generations in globular clusters

Annibale D'Ercole; Enrico Vesperini; F. D'Antona; Stephen L. W. McMillan; Simone Recchi

We study the formation and dynamical evolution of clusters with multiple stellar generations. Observational studies have found that some globular clusters host a population of second generation (SG) stars which show chemical anomalies and must have formed from gas containing matter processed in the envelopes of first generation (FG) cluster stars. We study the SG formation process by means of 1D hydrodynamical simulations, starting from a FG already in place and assuming that the SG is formed by the gas ejected by the Asymptotic Giant Branch (AGB) stars. This gas collects in a cooling flow into the cluster core, where it forms SG stars. The SG subsystem emerging from this process is initially strongly concentrated in the cluster innermost regions and its structural properties are largely independent of the FG initial properties. We also present the results of a model in which pristine gas contributes to the SG formation. In this model a very helium-rich SG population and one with a moderate helium enrichment form; the resulting SG bimodal helium distribution resembles that observed for SG stars in NGC 2808. By means of N-body simulations, we then study the two-population cluster dynamical evolution and mass loss. In our simulations, a large fraction of FG stars are lost early in the cluster evolution due to the expansion and stripping of the cluster outer layers resulting from early mass loss associated with FG SN ejecta. The SG population, initially concentrated in the innermost cluster regions, is largely unscathed by this early mass loss, and this early evolution leads to values of the number ratio of SG to FG stars consistent with observations. We also demonstrate possible evolutionary routes leading to the loss of most of the FG population, leaving an SG-dominated cluster. As the cluster evolves and the two populations mix, the local ratio of SG to FG stars, initially a decreasing function of radius, tends to a constant value in the inner parts of the cluster. Until mixing is complete, the radial profile of this number ratio is characterized by a flat inner part and a declining portion in the outer cluster regions.


Astronomy and Astrophysics | 2001

The O-Na and Mg-Al anticorrelations in turn-off and early subgiants in globular clusters

R. Gratton; P. Bonifacio; A. Bragaglia; Eugenio Carretta; V. Castellani; Miriam Centurion; A. Chieffi; Riccardo U. Claudi; G. Clementini; F. D'Antona; S. Desidera; Patrick Francois; F. Grundahl; Sara Lucatello; Paolo Molaro; Luca Pasquini; Christopher Sneden; F. Spite; Oscar Straniero

High dispersion spectra (R > 40 000) for a quite large number of stars at the main sequence turn-o and at the base of the giant branch in NGC 6397 and NGC 6752 were obtained with the UVES on Kueyen (VLT UT2). The (Fe/H) values we found are 2:03 0:02 0:04 and 1:42 0:02 0:04 for NGC 6397 and NGC 6752 respectively, where the rst error bars refer to internal and the second ones to systematic errors (within the abundance scale dened by our analysis of 25 subdwarfs with good Hipparcos parallaxes). In both clusters the (Fe/H)s obtained for TO-stars agree perfectly (within a few percent) with that obtained for stars at the base of the RGB. The (O=Fe) = 0:21 0:05 value we obtain for NGC 6397 is quite low, but it agrees with previous results obtained for giants in this cluster. Moreover, the star-to-star scatter in both O and Fe is very small, indicating that this small mass cluster is chemically very homogenous. On the other hand, our results show clearly and for the rst time that the O-Na anticorrelation (up to now seen only for stars on the red giant branches of globular clusters) is present among unevolved stars in the globular cluster NGC 6752, a more massive cluster than NGC 6397. A similar anticorrelation is present also for Mg and Al, and C and N. It is very dicult to explain the observed Na-O, and Mg-Al anticorrelation in NGC 6752 stars by a deep mixing scenario; we think it requires some non internal mechanism.


The Astrophysical Journal | 2004

The Early Evolution of Globular Clusters: The Case of NGC 2808

F. D'Antona; Vittoria Caloi

Enhancement and spread of helium among globular cluster stars have been recently suggested as a way to explain the horizontal-branch blue tails in those clusters that show a primordial spread in the abundances of C, N, O, and other elements involved in advanced CNO burning. Helium enhancement is unavoidable if the matter responsible for the abundance spreads is identified with the matter lost by massive asymptotic giant branch stars, which evolve during the early phases of globular cluster life, as we noted in 2002. In this paper we examine the implications of the hypothesis that, in many globular clusters, stars were born in two separate events: an initial burst (first generation), which gives origin to probably all high- and intermediate-mass stars and to a fraction of the cluster stars observed today, and a second, prolonged star formation phase (second generation), in which stars form directly from the ejecta of the intermediate-mass stars of the first generation. In particular, we consider in detail the morphology of the horizontal branch in NGC 2808 and argue that it unveils the early cluster evolution, from the birth of the first star generation to the end of the second phase of star formation. This framework provides a feasible interpretation for the still-unexplained dichotomy of the NGC 2808 horizontal branch, attributing the lack of stars in the RR Lyrae region to the gap in the helium content between the red clump, whose stars are considered to belong to the first stellar generation and have primordial helium, and the blue side of the horizontal branch, whose minimum helium content reflects the helium abundance in the smallest progenitor mass (~4 M☉) contributing to the second stellar generation. This scenario provides constraints on the required initial mass function, in such a way that a great many remnant neutron stars and stellar mass black holes might have been produced.


Monthly Notices of the Royal Astronomical Society | 2010

Abundance patterns of multiple populations in globular clusters: a chemical evolution model based on yields from AGB ejecta

Annibale D'Ercole; F. D'Antona; P. Ventura; Enrico Vesperini; Stephen L. W. McMillan

A large number of spectroscopic studies have provided evidence of the presence of multiple populations in globular clusters by revealing patterns in the stellar chemical abundances. This paper is aimed at studying the origin of these abundance patterns. We explore a model in which second generation (SG) stars form out of a mix of pristine gas and ejecta of the first generation of asymptotic giant branch stars. We first study the constraints imposed by the spectroscopic data of SG stars in globular clusters on the chemical properties of the asymptotic and super asymptotic giant branch ejecta. With a simple one-zone chemical model, we then explore the formation of the SG population abundance patterns focussing our attention on the Na-O, Al-Mg anticorrelations and on the helium distribution function. We carry out a survey of models and explore the dependence of the final SG chemical properties on the key parameters affecting the gas dynamics and the SG formation process. Finally, we use our chemical evolution framework to build specific models for NGC 2808 and M4, two Galactic globular clusters which show different patterns in the Na–O and Mg–Al anticorrelation and have different helium distributions. We find that the amount of pristine gas involved in the formation of SG stars is a key parameter to fit the observed O–Na and Mg–Al patterns. The helium distribution function for these models is in general good agreement with the observed one. Our models, by shedding light on the role of different parameters and their interplay in determining the final SG chemical properties, illustrate the basic ingredients, constraints and problems encountered in this self-enrichment scenario which must be addressed by more sophisticated chemical and hydrodynamic simulations.


Astronomy and Astrophysics | 2005

Full computation of massive AGB evolution - I. The large impact of convection on nucleosynthesis

P. Ventura; F. D'Antona

It is well appreciated that the description of overadiabatic convection affects the structure of the envelopes of luminous asymptotic giant branch (AGB) stars in the phase of “hot bottom burning” (HBB). We stress that this important uncertainty in the modeling plays a role which is much more dramatic than the role which can be ascribed, e.g., to the uncertainty in the nuclear cross-sections. Due to the role tentatively attributed today to the HBB nucleosynthesis as the site of self-enrichment of Globular Clusters stars, it is necessary to explore the difference in nucleosynthesis obtained by different prescriptions for convection. We present results of detailed evolutionary calculations of the evolution of stars of intermediate mass during the AGB phase for the metallicity typical of the Globular Clusters that show the largest spread in CNO abundances (


Astronomy and Astrophysics | 2009

Massive AGB models of low metallicity: the implications for the self-enrichment scenario in metal-poor globular clusters

P. Ventura; F. D'Antona

Z\sim 10^{-3}


Astronomy and Astrophysics | 2002

The lithium content of the globular cluster NGC 6397

P. Bonifacio; Luca Pasquini; F. Spite; A. Bragaglia; Eugenio Carretta; V. Castellani; Miriam Centurion; A. Chieffi; R. U. Claudi; G. Clementini; F. D'Antona; S. Desidera; Patrick Francois; R. Gratton; F. Grundahl; G. James; Sara Lucatello; Christopher Sneden; Oscar Straniero

). We follow carefully the nucleosynthesis at the base of the external convective region, showing that very different results can be obtained according to the presciption adopted to find out the temperature gradient within the instability regions. We discuss the uncertainties in the yields of the various chemical species and the role which these sources can play as polluters of the interstellar medium.


The Astrophysical Journal | 2013

A WFC3/HST VIEW OF THE THREE STELLAR POPULATIONS IN THE GLOBULAR CLUSTER NGC 6752*

A. P. Milone; A. F. Marino; Giampaolo Piotto; L. R. Bedin; Jay Anderson; Antonio Aparicio; Andrea Bellini; S. Cassisi; F. D'Antona; F. Grundahl; M. Monelli; David Yong

Context. We present the physical and chemical properties of intermediate-mass star models of low metallicity, as they evolve along the thermal pulse phase. Aims. We extend to low metallicities, of Z = 1, 2a nd 6× 10 −4 , models previously computed for chemical compositions typical of globular clusters of an intermediate metallicity (Z = 0.001), and for the most metal-rich clusters found in our Galaxy (Z = 0.004). We aim to test in particular the self-enrichment scenario for metal-poor globular clusters. Methods. We calculated three grids of intermediate-mass models with metallicities Z = 10 −4 ,2 × 10 −4 ,a nd 6× 10 −4 , following their evolutionary sequences from the pre-main-sequence to the asymptotic giant branch phase, almost until the ejection of the entire envelope. We discuss the chemistry of the ejecta, and, in particular, the mass fractions of elements that have been studied in the numerous, deep, spectroscopic surveys of globular clusters. Results. Although oxygen and sodium data are scarce for low-metallicity globular clusters, the small amonut of data avalilable for the unevolved stars in NGC 6397 are compatible with the models. Furthermore, we find good agreement with the C–N anticorrelation of unevolved stars in the cluster M 15. In this cluster, however, no stars of low oxygen ([O/Fe] ∼− 1) abundance have been detected. The most massive, very metal-poor clusters, should contain such stars, according to the present models. At the lowest metallicity Z = 10 −4 , the ejecta of the most massive AGBs have C/O > 1, due to the dramatic decrease in the oxygen abundance. We discuss the possible implications of this prediction.


Monthly Notices of the Royal Astronomical Society | 2015

The Hubble Space TelescopeUV Legacy Survey of Galactic Globular Clusters – V. Constraints on formation scenarios

A. Renzini; F. D'Antona; Santi Cassisi; Ivan R. King; A. P. Milone; P. Ventura; J. Anderson; L. R. Bedin; Andrea Bellini; Thomas M. Brown; Giampaolo Piotto; R. P. van der Marel; B. Barbuy; E. Dalessandro; Sebastian L. Hidalgo; A. F. Marino; Sergio Ortolani; Maurizio Salaris; Ata Sarajedini

We make use of high resolution, high signal-to-noise ratio spectra of 12 turn-o stars in the metal-poor globular cluster NGC 6397 to measure its lithium content. We conclude that they all have the same lithium abundance A(Li)= 2:34 with a standard deviation of 0.056 dex. We use this result, together with Monte Carlo simulations, to estimate that the maximum allowed intrinsic scatter is of the order of 0.035 dex. This is a new stringent constraint to be fulfilled by stellar models which predict Li depletion. We argue that although a mild depletion of 0.1-0.2 dex, as predicted by recent models, cannot be ruled out, there is no compelling reason for it. This fact, together with the good agreement with the Li abundance observed in field stars, supports the primordial origin of lithium in metal-poor stars. Taking the above value as the primordial lithium abundance implies a cosmic baryonic density which is eitherbh 2 = 0:016 0:004 orbh 2 = 0:005 +0:0026 0:0006 , from the predictions of standard big bang nucleosynthesis. The high baryonic density solution is in agreement with recent results on the primordial abundance of deuterium and 3 He and on the estimates derived from the fluctuations of the cosmic microwave background.


Astronomy and Astrophysics | 2002

Yields from low metallicity, intermediate mass AGB stars: Their role for the CNO and lithium abundances in Globular Cluster stars

P. Ventura; F. D'Antona; Italo Mazzitelli

Multi-band Hubble Space Telescope photometry reveals that the main sequence, sub-giant, and the red-giant branch of the globular cluster NGC 6752 splits into three main components in close analogy with the three distinct segments along its horizontal branch stars. These triple sequences are consistent with three stellar groups: a stellar population with a chemical composition similar to field-halo stars (Population a), a Population (c) with enhanced sodium and nitrogen, depleted carbon and oxygen, and an enhanced helium abundance (ΔY ~ 0.03), and a Population (b) with an intermediate (between Populations a and c) chemical composition and slightly enhanced helium (ΔY ~ 0.01). These components contain ~25% (Population a), ~45% (Population b), and ~30% (Population c) of the stars. No radial gradient for the relative numbers of the three populations has been identified out to about 2.5 half-mass radii.

Collaboration


Dive into the F. D'Antona's collaboration.

Top Co-Authors

Avatar

Enrico Vesperini

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

A. P. Milone

Australian National University

View shared research outputs
Top Co-Authors

Avatar

A. F. Marino

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge