Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. D. Wilder is active.

Publication


Featured researches published by F. D. Wilder.


Science | 2016

Electron-Scale Measurements of Magnetic Reconnection in Space

J. L. Burch; R. B. Torbert; T. D. Phan; L. J Chen; T. E. Moore; R. E. Ergun; J. P. Eastwood; D. J. Gershman; P. A. Cassak; M. R. Argall; Sheng-Hsiang Wang; Michael Hesse; C. J. Pollock; B. L. Giles; R. Nakamura; B. H. Mauk; S. A. Fuselier; C. T. Russell; R. J. Strangeway; J. F. Drake; M. A. Shay; Yu. V. Khotyaintsev; Per-Arne Lindqvist; Göran Marklund; F. D. Wilder; D. T. Young; K. Torkar; J. Goldstein; J. C. Dorelli; L. A. Avanov

Probing magnetic reconnection in space Magnetic reconnection occurs when the magnetic field permeating a conductive plasma rapidly rearranges itself, releasing energy and accelerating particles. Reconnection is important in a wide variety of physical systems, but the details of how it occurs are poorly understood. Burch et al. used NASAs Magnetospheric Multiscale mission to probe the plasma properties within a reconnection event in Earths magnetosphere (see the Perspective by Coates). They find that the process is driven by the electron-scale dynamics. The results will aid our understanding of magnetized plasmas, including those in fusion reactors, the solar atmosphere, solar wind, and the magnetospheres of Earth and other planets. Science, this issue p. 10.1126/science.aaf2939; see also p. 1176 Magnetic reconnection is driven by the electron-scale dynamics occurring within magnetized plasmas. INTRODUCTION Magnetic reconnection is a physical process occurring in plasmas in which magnetic energy is explosively converted into heat and kinetic energy. The effects of reconnection—such as solar flares, coronal mass ejections, magnetospheric substorms and auroras, and astrophysical plasma jets—have been studied theoretically, modeled with computer simulations, and observed in space. However, the electron-scale kinetic physics, which controls how magnetic field lines break and reconnect, has up to now eluded observation. RATIONALE To advance understanding of magnetic reconnection with a definitive experiment in space, NASA developed and launched the Magnetospheric Multiscale (MMS) mission in March 2015. Flying in a tightly controlled tetrahedral formation, the MMS spacecraft can sample the magnetopause, where the interplanetary and geomagnetic fields reconnect, and make detailed measurements of the plasma environment and the electric and magnetic fields in the reconnection region. Because the reconnection dissipation region at the magnetopause is thin (a few kilometers) and moves rapidly back and forth across the spacecraft (10 to 100 km/s), high-resolution measurements are needed to capture the microphysics of reconnection. The most critical measurements are of the three-dimensional electron distributions, which must be made every 30 ms, or 100 times the fastest rate previously available. RESULTS On 16 October 2015, the MMS tetrahedron encountered a reconnection site on the dayside magnetopause and observed (i) the conversion of magnetic energy to particle kinetic energy; (ii) the intense current and electric field that causes the dissipation of magnetic energy; (iii) crescent-shaped electron velocity distributions that carry the current; and (iv) changes in magnetic topology. The crescent-shaped features in the velocity distributions (left side of the figure) are the result of demagnetization of solar wind electrons as they flow into the reconnection site, and their acceleration and deflection by an outward-pointing electric field that is set up at the magnetopause boundary by plasma density gradients. As they are deflected in these fields, the solar wind electrons mix in with magnetospheric electrons and are accelerated along a meandering path that straddles the boundary, picking up the energy released in annihilating the magnetic field. As evidence of the predicted interconnection of terrestrial and solar wind magnetic fields, the crescent-shaped velocity distributions are diverted along the newly connected magnetic field lines in a narrow layer just at the boundary. This diversion along the field is shown in the right side of the figure. CONCLUSION MMS has yielded insights into the microphysics underlying the reconnection between interplanetary and terrestrial magnetic fields. The persistence of the characteristic crescent shape in the electron distributions suggests that the kinetic processes causing magnetic field line reconnection are dominated by electron dynamics, which produces the electric fields and currents that dissipate magnetic energy. The primary evidence for this magnetic dissipation is the appearance of an electric field and a current that are parallel to one another and out of the plane of the figure. MMS has measured this electric field and current, and has identified the important role of electron dynamics in triggering magnetic reconnection. Electron dynamics controls the reconnection between the terrestrial and solar magnetic fields. The process of magnetic reconnection has been a long-standing mystery. With fast particle measurements, NASA’s Magnetospheric Multiscale (MMS) mission has measured how electron dynamics controls magnetic reconnection. The data in the circles show electrons with velocities from 0 to 104 km/s carrying current out of the page on the left side of the X-line and then flowing upward and downward along the reconnected magnetic field on the right side. The most intense fluxes are red and the least intense are blue. The plot in the center shows magnetic field lines and out-of-plane currents derived from a numerical plasma simulation using the parameters observed by MMS. Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA’s Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth’s magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.


Geophysical Research Letters | 2016

Magnetospheric Multiscale Observations of Magnetic Reconnection Associated with Kelvin-Helmholtz Waves

S. Eriksson; B. Lavraud; F. D. Wilder; J. E. Stawarz; B. L. Giles; J. L. Burch; W. Baumjohann; R. E. Ergun; Per-Arne Lindqvist; W. Magnes; C. J. Pollock; C. T. Russell; Y. Saito; R. J. Strangeway; R. B. Torbert; D. J. Gershman; Yu. V. Khotyaintsev; J. C. Dorelli; S. J. Schwartz; L. A. Avanov; E. W. Grimes; Y. Vernisse; A. P. Sturner; T. D. Phan; Göran Marklund; T. E. Moore; W. R. Paterson; K. A. Goodrich

The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvin-Helmholtz (KH) waves at the duskside magnetopause on 8 Septemb ...


Physical Review Letters | 2016

Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection

S. Eriksson; F. D. Wilder; R. E. Ergun; S. J. Schwartz; P. A. Cassak; J. L. Burch; Li-Jin Chen; R. B. Torbert; T. D. Phan; B. Lavraud; K. A. Goodrich; J. C. Holmes; J. E. Stawarz; A. P. Sturner; D. M. Malaspina; M. E. Usanova; K. J. Trattner; R. J. Strangeway; C. T. Russell; C. J. Pollock; B. L. Giles; Michael Hesse; Per-Arne Lindqvist; J. F. Drake; M. A. Shay; R. Nakamura; Göran Marklund

We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E_{∥}) that is larger than predicted by simulations. The high-speed (∼300  km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E_{∥} is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.


Physical Review Letters | 2016

Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection.

R. E. Ergun; K. A. Goodrich; F. D. Wilder; J. C. Holmes; J. E. Stawarz; S. Eriksson; A. P. Sturner; D. M. Malaspina; M. E. Usanova; R. B. Torbert; Per-Arne Lindqvist; Y. V. Khotyaintsev; J. L. Burch; R. J. Strangeway; C. T. Russell; C. J. Pollock; B. L. Giles; Michael Hesse; Li-Jin Chen; Giovanni Lapenta; M. V. Goldman; D. L. Newman; S. J. Schwartz; J. P. Eastwood; T. D. Phan; F. S. Mozer; J. F. Drake; M. A. Shay; P. A. Cassak; R. Nakamura

We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E_{∥}) associated with magnetic reconnection in the subsolar region of the Earths magnetopause. E_{∥} events near the electron diffusion region have amplitudes on the order of 100  mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E_{∥} events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E_{∥} events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.


Journal of Geophysical Research | 2015

Asymmetric magnetic reconnection with a flow shear and applications to the magnetopause

C. E. Doss; C. M. Komar; P. A. Cassak; F. D. Wilder; S. Eriksson; J. F. Drake

We perform a systematic theoretical and numerical study of antiparallel two-dimensional magnetic reconnection with asymmetries in the plasma density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnecting fields, which commonly occurs at planetary magnetospheres. We analytically predict the speed at which an isolated X line is convected by the flow, the reconnection rate, and the critical flow speed at which reconnection no longer takes place for arbitrary reconnecting magnetic field strengths, densities, and upstream flow speeds, and we confirm the results with two-fluid numerical simulations. The predictions and simulation results counter the prevailing model of reconnection at Earths dayside magnetopause which says reconnection occurs with a stationary X line for sub-Alfvenic magnetosheath flow, reconnection occurs but the X line convects for magnetosheath flows between the Alfven speed and double the Alfven speed, and reconnection does not occur for magnetosheath flows greater than double the Alfven speed. In particular, we find that X line motion is governed by momentum conservation from the upstream flows, which are weighted differently in asymmetric systems, so the X line convects for generic conditions including sub-Alfvenic upstream speeds. For the reconnection rate, as with symmetric reconnection, it drops with increasing flow shear and there is a cutoff speed above which reconnection is not predominant. However, while the cutoff condition for symmetric reconnection is that the difference in flows on the two sides of the reconnection site is twice the Alfven speed, we find asymmetries cause the cutoff speed for asymmetric reconnection to be higher than twice the asymmetric form of the Alfven speed. The stronger the asymmetries, the more the cutoff exceeds double the asymmetric Alfven speed. This is due to the fact that in asymmetric reconnection, the plasma with the smaller mass flux into the dissipation region contributes a smaller mass to the dissipation region, so the effect of its flow on opposing the release of energy by the reconnected magnetic fields is diminished and the reconnection is not suppressed to the extent previously thought. The results compare favorably with an observation of reconnection at Earths polar cusps during a period of northward interplanetary magnetic field, where reconnection occurs despite the magnetosheath flow speed being more than twice the magnetosheath Alfven speed, the previously proposed suppression condition. These results are expected to be of broad importance for magnetospheric physics of Earth and other planets; particular applications are discussed.


Geophysical Research Letters | 2016

Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause

R. E. Ergun; J. C. Holmes; K. A. Goodrich; F. D. Wilder; J. E. Stawarz; S. Eriksson; D. L. Newman; S. J. Schwartz; Martin V. Goldman; A. P. Sturner; D. M. Malaspina; M. E. Usanova; R. B. Torbert; M. R. Argall; P.-A. Lindqvist; Yuri V. Khotyaintsev; J. L. Burch; R. J. Strangeway; C. T. Russell; C. J. Pollock; B. L. Giles; J. C. Dorelli; L. A. Avanov; Michael Hesse; L. J Chen; B. Lavraud; O. Le Contel; A. Retinò; T. D. Phan; J. P. Eastwood

We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earths magnetopause. The observe ...


Geophysical Research Letters | 2016

Estimates of terms in Ohm's law during an encounter with an electron diffusion region

R. B. Torbert; J. L. Burch; B. L. Giles; D. J. Gershman; C. J. Pollock; J. C. Dorelli; L. A. Avanov; M. R. Argall; J. R. Shuster; R. J. Strangeway; C. T. Russell; R. E. Ergun; F. D. Wilder; K. A. Goodrich; H. A. Faith; C. J. Farrugia; Per-Arne Lindqvist; T. D. Phan; Y. V. Khotyaintsev; T. E. Moore; Göran Marklund; William Daughton; W. Magnes; C. A. Kletzing; Scott Randolph Bounds

We present measurements from the Magnetospheric Multiscale (MMS) mission taken during a reconnection event on the dayside magnetopause which includes a passage through an electron diffusion region ...


Geophysical Research Letters | 2016

MMS observations of electron-scale filamentary currents in the reconnection exhaust and near the X line

T. D. Phan; J. P. Eastwood; P. A. Cassak; M. Øieroset; J. T. Gosling; D. J. Gershman; F. S. Mozer; M. A. Shay; M. Fujimoto; William Daughton; J. F. Drake; J. L. Burch; R. B. Torbert; R. E. Ergun; L. J Chen; Sheng-Hsiang Wang; C. J. Pollock; J. C. Dorelli; B. Lavraud; B. L. Giles; T. E. Moore; Y. Saito; L. A. Avanov; W. R. Paterson; R. J. Strangeway; C. T. Russell; Y. V. Khotyaintsev; Per-Arne Lindqvist; M. Oka; F. D. Wilder

We report Magnetospheric Multiscale observations of macroscopic and electron-scale current layers in asymmetric reconnection. By intercomparing plasma, magnetic, and electric field data at multiple ...


Journal of Geophysical Research | 2014

Observation of a retreating x line and magnetic islands poleward of the cusp during northward interplanetary magnetic field conditions

F. D. Wilder; S. Eriksson; K. J. Trattner; P. A. Cassak; S. A. Fuselier; B. Lybekk

When the interplanetary magnetic field is northward, reconnection occurs in each hemisphere on lobe field lines, poleward of the cusp. We have identified a case where the Cluster spacecraft crossed the magnetopause and encountered a tailward retreating x line. The x line is identified by the encounter of both a tailward and sunward jet, as well as Hall magnetic field signatures in the out-of-plane direction. Additionally, we find no signatures of electron heating and hypothesize that the spacecraft is too close to the x line to observe the accelerated electrons. Using two spacecraft, we are able to resolve the velocity of the structure, which moves near the magnetosheath speed. The speed of the x line is also consistent with the asymmetric reconnection theory. To our knowledge, this is the first time the speed of a retreating x line has been measured directly. Additionally, we observe ion distribution functions with counterstreaming populations, suggesting that a second x line formed sunward of the original one, leading to a magnetic island.


Geophysical Research Letters | 2016

Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause crossing

O. Le Contel; A. Retinò; H. Breuillard; L. Mirioni; Peter Robert; A. Chasapis; B. Lavraud; Thomas Chust; Laurence Rezeau; F. D. Wilder; D. B. Graham; M. R. Argall; D. J. Gershman; Per-Arne Lindqvist; Y. V. Khotyaintsev; Göran Marklund; R. E. Ergun; K. A. Goodrich; J. L. Burch; R. B. Torbert; J. Needell; M. Chutter; D. Rau; I. Dors; C. T. Russell; W. Magnes; R. J. Strangeway; K. R. Bromund; H. K. Leinweber; F. Plaschke

We present Magnetospheric Multiscale (MMS) mission measurements during a full magnetopause crossing associated with an enhanced southward ion flow. A quasi-steady magnetospheric whistler mode wave ...

Collaboration


Dive into the F. D. Wilder's collaboration.

Top Co-Authors

Avatar

J. L. Burch

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

R. E. Ergun

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

R. B. Torbert

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

C. T. Russell

University of California

View shared research outputs
Top Co-Authors

Avatar

B. L. Giles

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. A. Goodrich

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

S. Eriksson

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

C. J. Pollock

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

J. C. Dorelli

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge