F. Fang
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Fang.
The Astrophysical Journal | 2007
Maria del Carmen Polletta; M. Tajer; L. Maraschi; G. Trinchieri; Carol J. Lonsdale; L. Chiappetti; S. Andreon; M. Pierre; O. Le Fèvre; G. Zamorani; D. Maccagni; O. Garcet; Jean Surdej; A. Franceschini; D. Alloin; D. L. Shupe; Jason A. Surace; F. Fang; M. Rowan-Robinson; Harding E. Smith; L. Tresse
We present the spectral energy distributions (SEDs) of a hard X-ray selected sample. The sample contains 136 sources with F(2-10 keV)>10^-14 erg/cm^2/s and 132 are AGNs. The sources are detected in a 1 square degree area of the XMM-Newton-Medium Deep Survey where optical data from the VVDS, CFHTLS surveys, and infrared data from the SWIRE survey are available. Based on a SED fitting technique we derive photometric redshifts with sigma(1+z)=0.11 and 6% of outliers and identify AGN signatures in 83% of the objects. This fraction is higher than derived when a spectroscopic classification is available. The remaining 17+9-6% of AGNs shows star-forming galaxy SEDs (SF class). The sources with AGN signatures are divided in two classes, AGN1 (33+6-1%) and AGN2 (50+6-11). The AGN1 and AGN2 classes include sources whose SEDs are fitted by type 1 and type 2 AGN templates, respectively. On average, AGN1s show soft X-ray spectra, consistent with being unabsorbed, while AGN2s and SFs show hard X-ray spectra, consistent with being absorbed. The analysis of the average SEDs as a function of X-ray luminosity shows a reddening of the IR SEDs, consistent with a decreasing contribution from the host galaxy at higher luminosities. The AGNs in the SF classes are likely obscured in the mid-infrared, as suggested by their low L(3-20micron)/Lcorr(0.5-10 keV) ratios. We confirm the previously found correlation for AGNs between the radio luminosity and the X-ray and the mid-infrared luminosities. The X-ray-radio correlation can be used to identify heavily absorbed AGNs. However, the estimated radio fluxes for the missing AGN population responsible for the bulk of the background at E>10 keV are too faint to be detected even in the deepest current radio surveys.We present the SEDs of a hard X-ray selected sample containing 136 sources with F_(2-10 keV) > 10^(-14) erg cm^(-2) s^(-1); 132 are AGNs. The sources are detected in a 1 deg^2 area of the XMM-Newton Medium Deep Survey where optical data from the VVDS and CFHTLS and infrared data from the SWIRE survey are available. Based on a SED fitting technique we derive photometric redshifts with σ(1 + z) = 0.11 and 6% of outliers and identify AGN signatures in 83% of the objects. This fraction is higher than derived when a spectroscopic classification is available. The remaining 17^(+9)_(-6)% of AGNs show star-forming galaxy SEDs (SF class). The sources with AGN signatures are divided in two classes, AGN1 (33^(+6)_(-1)%) and AGN2 (50^(+6)_(-11)%). The AGN1 and AGN2 classes include sources whose SEDs are fitted by type 1 and type 2 AGN templates, respectively. On average, AGN1s show soft X-ray spectra, consistent with being unabsorbed, while AGN2s and SFs show hard X-ray spectra, consistent with being absorbed. The analysis of the average SEDs as a function of X-ray luminosity shows a reddening of the infrared SEDs, consistent with a decreasing contribution from the host galaxy at higher luminosities. The AGNs in the SF classes are likely obscured in the mid-infrared, as suggested by their low L_(3-20 μm)/L^(corr)_(0.5-10 keV) ratios. We confirm the previously found correlation for AGNs between the radio luminosity and the X-ray and the mid-infrared luminosities. The X-ray-radio correlation can be used to identify heavily absorbed AGNs. However, the estimated radio fluxes for the missing AGN population responsible for the bulk of the background at E > 10 keV are too faint to be detected even in the deepest current radio surveys.
Publications of the Astronomical Society of the Pacific | 2003
Carol J. Lonsdale; Harding E. Smith; Michael Rowan-Robinson; Jason A. Surace; D. L. Shupe; Cong Xu; S. J. Oliver; Deborah Lynne Padgett; F. Fang; Tim Conrow; A. Franceschini; Nick Gautier; Matthew Joseph Griffin; Perry B. Hacking; Frank J. Masci; G. Morrison; Joanne O’Linger; Frazer N. Owen; I. Perez-Fournon; M. Pierre; Gordon J. Stacey; Sandra Castro; Maria del Carmen Polletta; D. Farrah; T. H. Jarrett; D. T. Frayer; Brian D. Siana; T. Babbedge; Simon Dye; M. Fox
The largest of the SIRTF Legacy programs, SWIRE will survey 65 sq. deg. in seven high latitude fields selected to be the best wide low-extinction windows into the extragalactic sky. SWIRE will detect millions of spheroids, disks and starburst galaxies to z>3 and will map L* and brighter systems on scales up to 150 Mpc at z∼0.5–1. It will also detect ∼104 low extinction AGN and large numbers of obscured AGN. An extensive program of complementary observations is underway. The data are non-proprietary and will be made available beginning in Spring 2004.
Astrophysical Journal Supplement Series | 2004
Mark Lacy; Lisa J. Storrie-Lombardi; Anna Sajina; P. N. Appleton; Lee Armus; S. C. Chapman; P. I. Choi; D. Fadda; F. Fang; D. T. Frayer; I. Heinrichsen; G. Helou; Myungshin Im; Francine Roxanne Marleau; Frank J. Masci; D. L. Shupe; B. T. Soifer; Jason A. Surace; Harry I. Teplitz; G. Wilson; Lin Yan
Selection of active galactic nuclei (AGNs) in the infrared facilitates the discovery of AGNs whose optical emission is extinguished by dust. In this paper, we use the Spitzer Space Telescope First Look Survey (FLS) to assess the fraction of AGNs with mid-infrared (MIR) luminosities that are comparable to quasars and that are missed in optical quasar surveys because of dust obscuration. We begin by using the Sloan Digital Sky Survey (SDSS) database to identify 54 quasars within the 4 deg^2 extragalactic FLS. These quasars occupy a distinct region in MIR color space by virtue of their strong, red continua. This has allowed us to define an MIR color criterion for selecting AGN candidates. About 2000 FLS objects have colors that are consistent with them being AGNs, but most are much fainter in the MIR than the SDSS quasars, which typically have 8 μm flux densities S_(8.0) ~ 1 mJy. We have investigated the properties of 43 objects with S_(8.0) ≥ 1 mJy that satisfy our AGN color selection. This sample should contain both unobscured quasars as well as AGNs that are absent from the SDSS survey because of extinction in the optical. After removing 16 known quasars, three probable normal quasars, and eight spurious or confused objects from the initial sample of 43, we are left with 16 objects that are likely to be obscured quasars or luminous Seyfert 2 galaxies. This suggests that the numbers of obscured and unobscured AGNs are similar in samples selected in the MIR at S_(8.0) ~ 1 mJy.
The Astrophysical Journal | 2006
Maria del Carmen Polletta; Belinda J. Wilkes; Brian D. Siana; Carol J. Lonsdale; Roy E. Kilgard; Harding E. Smith; Dong-Woo Kim; Frazer N. Owen; A. Efstathiou; T. H. Jarrett; Gordon J. Stacey; A. Franceschini; Michael Rowan-Robinson; T. Babbedge; S. Berta; F. Fang; D. Farrah; E. Gonzalez-Solares; G. Morrison; Jason A. Surace; Dave Shupe
Using the large multi-wavelength data set in the chandra/SWIRE Survey (0.6 square degrees in the Lockman Hole), we show evidence for the existence of highly obscured (Compton-thick) AGN, estimate a lower limit to their surface density and characterize their multi-wavelength properties. Two independent selection methods based on the X-ray and infrared spectral properties are presented. The two selected samples contain 1) 5 X-ray sources with hard X-ray spectra and column densities > 10^24 cm-2, and 2) 120 infrared sources with red and AGN-dominated infrared spectral energy distributions (SEDs). We estimate a surface density of at least 25 Compton-thick AGN per square degree detected in the infrared in the chandra/SWIRE field of which ~40% show distinct AGN signatures in their optical/near-infrared SEDs, the remainings being dominated by the host-galaxy emission. Only ~33% of all Compton-thick AGN are detected in the X-rays at our depth (F(0.3-8 keV)>10^-15 erg/cm2/s. We report the discovery of two sources in our sample of Compton-thick AGN, SWIRE_J104409.95+585224.8 (z=2.54) and SWIRE_J104406.30+583954.1 (z=2.43), which are the most luminous Compton-thick AGN at high-z currently known. The properties of these two sources are discussed in detail with an analysis of their spectra, SEDs, luminosities and black-hole masses.
Astrophysical Journal Supplement Series | 2004
Carol J. Lonsdale; Maria del Carmen Polletta; Jason A. Surace; Dave Shupe; F. Fang; C. Kevin Xu; Harding E. Smith; Brian D. Siana; Michael Rowan-Robinson; T. Babbedge; Seb Oliver; F. Pozzi; Payam Davoodi; Frazer N. Owen; Deborah Lynne Padgett; D. T. Frayer; Thomas Harold Jarrett; Frank J. Masci; JoAnne O'Linger; Tim Conrow; D. Farrah; G. Morrison; Nick Gautier; A. Franceschini; S. Berta; I. Perez-Fournon; Evanthia Hatziminaoglou; A. Afonso-Luis; H. Dole; Gordon J. Stacey
We characterize the SWIRE galaxy populations in the SWIRE validation field within the Lockman Hole, based on the 3.6-24μ Spitzer data and deep U,g,r,i optical imaging within an area ∼1/3 sq. deg for ∼16,000 Spitzer-SWIRE sources. The entire SWIRE survey will discover over 2.3 million galaxies at 3.6μm and almost 350,000 at 24μm; ∼ 70,000 of these will be 5-band 3.6-24μ detections. The colors cover a broad range, generally well represented by redshifted spectral
The Astronomical Journal | 2005
Michael Rowan-Robinson; T. Babbedge; Jason A. Surace; Dave Shupe; F. Fang; Carol J. Lonsdale; Gene Smith; Maria del Carmen Polletta; Brian D. Siana; E. Gonzalez-Solares; Kevin Xu; Frazer N. Owen; Payam Davoodi; Herve Dole; Donovan Louis Domingue; A. Efstathiou; D. Farrah; M. Fox; A. Franceschini; D. T. Frayer; Evanthia Hatziminaoglou; Frank J. Masci; G. Morrison; K. Nandra; Seb Oliver; Natalie Onyett; Deborah Lynne Padgett; I. Perez-Fournon; Steve Serjeant; Gordon J. Stacey
We discuss optical associations, spectral energy distributions and photometric redshifts for SWIRE sources in the ELAIS-N1 area and the Lockman Validation Field. The band-merged IRAC (3.6, 4.5, 5.8 and 8.0 mu) and MIPS (24, 70, 160 mu) data have been associated with optical UgriZ data from the INT Wide Field Survey in ELAIS-N1, and with our own optical Ugri data in Lockman-VF. The spectral energy distributions of selected ELAIS sources in N1 detected by SWIRE, most with spectroscopic redshifts, are modelled in terms of a simple set of galaxy and quasar templates in the optical and near infrared, and with a set of dust emission templates (cirrus, M82 starburst, Arp 220 starburst, and AGN dust torus) in the mid infrared. The optical data, together with the IRAC 3.6 and 4.5 mu data, have been used to determine photometric redshifts. For galaxies with known spectroscopic redshifts there is a notable improvement in the photometric redshift when the IRAC data are used, with a reduction in the rms scatter from 10% in (1+z) to 7%. The photometric redshifts are used to derive the 3.6 and 24 mu redshift distribution and to compare this with the predictions of models. For those sources with a clear mid infrared excess, relative to the galaxy starlight model used for the optical and near infrared, the mid and far infrared data are modelled in terms of the same dust emission templates. The proportions found of each template type are: cirrus 31%, M82 29%, Arp 220 10%, AGN dust tori 29%. The distribution of the different infrared sed types in the L_{ir}/L_{opt} versus L_{ir} plane, where L_{ir} and L_{opt} are the infrared and optical bolometric luminosities, is discussed.We discuss optical associations, spectral energy distributions and photometric redshifts for SWIRE sources in the ELAIS-N1 area and the Lockman Validation Field. The band-merged IRAC (3.6, 4.5, 5.8 and 8.0 mu) and MIPS (24, 70, 160 mu) data have been associated with optical UgriZ data from the INT Wide Field Survey in ELAIS-N1, and with our own optical Ugri data in Lockman-VF. The spectral energy distributions of selected ELAIS sources in N1 detected by SWIRE, most with spectroscopic redshifts, are modelled in terms of a simple set of galaxy and quasar templates in the optical and near infrared, and with a set of dust emission templates (cirrus, M82 starburst, Arp 220 starburst, and AGN dust torus) in the mid infrared. The optical data, together with the IRAC 3.6 and 4.5 mu data, have been used to determine photometric redshifts. For galaxies with known spectroscopic redshifts there is a notable improvement in the photometric redshift when the IRAC data are used, with a reduction in the rms scatter from 10% in (1+z) to 7%. The photometric redshifts are used to derive the 3.6 and 24 mu redshift distribution and to compare this with the predictions of models. For those sources with a clear mid infrared excess, relative to the galaxy starlight model used for the optical and near infrared, the mid and far infrared data are modelled in terms of the same dust emission templates. The proportions found of each template type are: cirrus 31%, M82 29%, Arp 220 10%, AGN dust tori 29%. The distribution of the different infrared sed types in the L_{ir}/L_{opt} versus L_{ir} plane, where L_{ir} and L_{opt} are the infrared and optical bolometric luminosities, is discussed.We discuss optical associations, spectral energy distributions (SEDs), and photometric redshifts for Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey sources in the European Large-Area ISO Survey (ELAIS) N1 area and the Lockman Validation Field (VF). The band-merged Infrared Array Camera (IRAC) (3.6, 4.5, 5.8, and 8.0 μm) and Multiband Imaging Photometer for Spitzer (24, 70, and 160 μm) data have been associated with optical UgriZ data from the Isaac Newton Telescope Wide Field Survey in ELAIS N1 and with our own optical Ugri data in Lockman-VF. Criteria for eliminating spurious infrared sources and for carrying out star-quasar-galaxy separation are discussed, and statistics of the identification rate are given. Thirty-two percent of sources in the ELAIS N1 field are found to be optically blank (to r = 23.5) and 16% in Lockman-VF (to r = 25). The SEDs of selected ELAIS sources in N1 detected by SWIRE, most with spectroscopic redshifts, are modeled in terms of a simple set of galaxy and quasar templates in the optical and near-infrared (NIR), and with a set of dust emission templates (cirrus, M82 starburst, Arp 220 starburst, and active galactic nucleus [AGN] dust torus) in the mid-infrared. The optical data, together with the IRAC 3.6 and 4.5 μm data, have been used to determine photometric redshifts. For galaxies with known spectroscopic redshifts, there is a notable improvement in the photometric redshift when the IRAC data are used, with a reduction in the rms scatter from 10% in (1 + z) to 7%. Although further spectroscopic data are needed to confirm this result, the prospect of determining good photometric redshifts for much of the SWIRE survey, expected to yield over 2 million extragalactic objects, is excellent. Some modifications to the optical templates were required in the previously uninvestigated wavelength region 2–5 μm. The photometric redshifts are used to derive the 3.6 and 24 μm redshift distribution and to compare this with the predictions of models. For those sources with a clear mid-infrared excess, relative to the galaxy starlight model used for the optical and NIR, the mid- and far-infrared data are modeled in terms of the same dust emission templates (cirrus, M82, Arp 220, and AGN dust torus). The proportions found of each template type are cirrus, 31%; M82, 29%; Arp 220, 10%; and AGN dust tori, 29%. The distribution of the different infrared SED types in the LIR/Lopt versus LIR plane, where LIR and Lopt are the infrared and optical bolometric luminosities, respectively, is discussed. There is an interesting population of luminous cool cirrus galaxies with LIR > Lopt, implying a substantial dust optical depth. Galaxies with Arp 220–like SEDs, of which there are a surprising preponderance compared with preexisting source count models, tend to have high ratios of infrared to optical bolometric luminosity, consistent with having very high extinction. There is also a high proportion of galaxies whose mid-infrared SEDs are fitted by an AGN dust torus template (29%). Of these only 8% of these are type 1 AGNs according to the optical-NIR template fitting, whereas 25% are fitted with galaxy templates in the optical-NIR and have LIR > Lopt and so have to be type 2 AGN. The remainder have LIR < Lopt and so can be Seyfert galaxies, in which the optical AGN fails to be detected against the light of the host galaxy. The implied dust covering factor, ≥75%, is much higher than that inferred for bright optically selected quasars.
Monthly Notices of the Royal Astronomical Society | 2006
T. Babbedge; M. Rowan-Robinson; M. Vaccari; Jason A. Surace; Carol J. Lonsdale; D. L. Clements; F. Fang; D. Farrah; A. Franceschini; E. Gonzalez-Solares; E. Hatziminaoglou; Cedric G. Lacey; Seb Oliver; N. Onyett; I. Perez-Fournon; Maria del Carmen Polletta; F. Pozzi; G. Rodighiero; D. L. Shupe; Brian D. Siana; Harding E. Smith
We construct rest-frame luminosity functions (LFs) at 3.6, 4.5, 5.8, 8 and 24 μm over the redshift range 0 < z < 2 for galaxies and 0 < z < 4 for optical quasi-stellar objects (QSOs), using optical and infrared (IR) data from the Spitzer Wide-area Infrared Extragalactic (SWIRE) Survey. The 3.6- and 4.5-μm galaxy LFs show evidence for moderate positive luminosity evolution up to z~ 1.5, consistent with the passive ageing of evolved stellar populations. Their comoving luminosity density was found to evolve passively, gradually increasing out to z~ 0.5–1 but flattening, or even declining, at higher redshift. Conversely, the 24-μm galaxy LF, which is more sensitive to obscured star formation and/or active galactic nuclei (AGN) activity, undergoes strong positive evolution, with the derived IR energy density and star formation rate (SFR) density ∝ (1 +z)^γ with γ= 4.5^(+0.7)_(−0.6) and the majority of this evolution occurring since z~ 1. Optical QSOs, however, show positive luminosity evolution in all bands, out to the highest redshifts (3 < z < 4). Modelling as L^* ∝ (1 +z)^γ gave γ= 1.3^(+0.1)_(−0.1) at 3.6 μm, γ= 1.0^(+0.1)_(−0.1) at 4.5 μm and stronger evolution at the longer wavelengths (5.8, 8 and 24 μm), of γ~ 3. Comparison of the galaxy LFs to predictions from a semi-analytic model based on cold dark matter (CDM) indicates that an initial mass function (IMF) skewed towards higher mass star formation in bursts compared to locally be preferred. As a result, the currently inferred massive SFRs in distant submm sources may require substantial downwards revision.
The Astronomical Journal | 2006
D. T. Frayer; D. Fadda; Lin Yan; Francine Roxanne Marleau; P. I. Choi; G. Helou; B. T. Soifer; P. N. Appleton; Lee Armus; R. Beck; H. Dole; C. W. Engelbracht; F. Fang; Karl D. Gordon; I. Heinrichsen; David A. Henderson; Ted Hesselroth; Myungshin Im; D. M. Kelly; Mark Lacy; Seppo Laine; William B. Latter; W. Mahoney; David Makovoz; Frank J. Masci; J. E. Morrison; Mehrdad Moshir; Alberto Noriega-Crespo; Deborah Lynne Padgett; M. Pesenson
We present 70 and 160 μm observations from the Spitzer extragalactic First Look Survey (xFLS). The data reduction techniques and the methods for producing co-added mosaics and source catalogs are discussed. Currently, 26% of the 70 μm sample and 49% of the 160 μm–selected sources have redshifts. The majority of sources with redshifts are star-forming galaxies at z < 0.5, while about 5% have infrared colors consistent with active galactic nuclei. The observed infrared colors agree with the spectral energy distributions (SEDs) of local galaxies previously determined from IRAS and Infrared Space Observatory data. The average 160 μm/70 μm color temperature for the dust is T_d ≃ 30 ± 5 K, and the average 70 μm/24 μm spectral index is α ≃ 2.4 ± 0.4. The observed infrared-to-radio correlation varies with redshift as expected out to z ~ 1 based on the SEDs of local galaxies. The xFLS number counts at 70 and 160 μm are consistent within uncertainties with the models of galaxy evolution, but there are indications that the current models may require slight modifications. Deeper 70 μm observations are needed to constrain the models, and redshifts for the faint sources are required to measure the evolution of the infrared luminosity function.
The Astrophysical Journal | 2007
J. Iglesias-Páramo; V. Buat; Jonathan Hernández-Fernández; C. K. Xu; D. Burgarella; Tsutomu T. Takeuchi; A. Boselli; D. L. Shupe; M. Rowan-Robinson; T. Babbedge; T. Conrow; F. Fang; D. Farrah; E. González-Solares; Carol J. Lonsdale; Gene Smith; Jason A. Surace; Tom A. Barlow; Karl Forster; Peter G. Friedman; D. C. Martin; Patrick Morrissey; Susan G. Neff; David Schiminovich; Mark Seibert; Todd Small; T. K. Wyder; Luciana Bianchi; Jose Donas; Timothy M. Heckman
We study the ultraviolet to far-infrared (hereafter UV-to-IR) SEDs of a sample of intermediate-redshift (0.2 ≤ z ≤ 0.7) UV-selected galaxies from the ELAIS N1 and ELAIS N2 fields by fitting a multi-wavelength data set to a library of GRASIL templates. Star formation related properties of the galaxies are derived from the library of models by using Bayesian statistics. We find a decreasing presence of galaxies with low attenuation and low total luminosity as redshift decreases, which does not hold for high total luminosity galaxies. In addition, the dust attenuation of low-mass galaxies increases as redshift decreases, and this trend seems to disappear for galaxies with M_* ≥ 10^(11) M_⊙. This result is consistent with a mass-dependent evolution of the dust-to-gas ratio, which could be driven by a mass-dependent efficiency of star formation in star-forming galaxies. The specific star formation rates (SSFR) decrease with increasing stellar mass at all redshifts, and for a given stellar mass the SSFR decreases with decreasing redshift. The differences in the slope of the M^*-SSFR relation found between this work and others at similar redshift could be explained by the adopted selection criteria of the samples, which for a UV-selected sample, favors blue, star-forming galaxies.
The Astronomical Journal | 2005
Evanthia Hatziminaoglou; I. Perez-Fournon; Maria del Carmen Polletta; A. Afonso-Luis; Antonio Hernán-Caballero; F. M. Montenegro-Montes; Carol J. Lonsdale; C. K. Xu; A. Franceschini; M. Rowan-Robinson; T. Babbedge; Harding E. Smith; Jason A. Surace; D. L. Shupe; F. Fang; D. Farrah; Seb Oliver; E. Gonzalez-Solares; S. Serjeant
We present a mid-infrared (MIR) analysis of 35 quasars with spectroscopic redshifts selected from the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE). We discuss their optical and MIR colors and show that these quasars occupy well-defined regions in MIR color-color space. We examine the issue of type 1 active galactic nuclei candidate selection in detail and propose new selection methods based on MIR colors. The available multiband data allow us to construct two new, well-sampled quasar templates, covering wavelengths from the ultraviolet to the MIR.